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Abstract: Gains and losses of large segments of genomic DNA, known as copy number variants 

(CNVs) gained considerable interest in clinical diagnostics lately, as particular forms may lead to 

inherited genetic diseases. In recent decades, researchers developed a wide variety of cytogenetic 

and molecular methods with different detection capabilities to detect clinically relevant CNVs. In 

this review, we summarize methodological progress from conventional approaches to current state 

of the art techniques capable of detecting CNVs from a few bases up to several megabases. Although 

the recent rapid progress of sequencing methods has enabled precise detection of CNVs, determin-

ing their functional effect on cellular and whole-body physiology remains a challenge. Here, we 

provide a comprehensive list of databases and bioinformatics tools that may serve as useful assets 

for researchers, laboratory diagnosticians, and clinical geneticists facing the challenge of CNV de-

tection and interpretation. 
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1. Introduction 

Among the least understood types of genetic variation are copy number variants 

(CNVs), a class of unbalanced structural variants characterized by deletions, insertions, 

duplications or even multiplications of DNA segments ranging in size from a few dozen 

of bp up to several Mb. Currently, the lower limit for CNV length is 50 bps, but this value 

has been gradually decreasing due to continuous methodological progress. The shift is 

mainly due to an increased resolution of used methods, allowing for detection of a wider 

variety of variant lengths and for an increase of CNV detection capacity (Figure 1). Con-

sidering this remarkable shift and the fact that generally used distinguishing criteria are 

somewhat vaguely defined, it has also been suggested that CNVs include a wider spec-

trum of variants. However, for practical reasons, we will focus on the conventional con-

cept of CNVs in this review. 

Pushing the limits of CNV detection revealed that they are widespread in human 

populations with a 5–10% difference of genomic sequences between normal individuals 

[1–3]. As a significant aspect of our heterogeneity, CNVs may disrupt gene function or 
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alter gene dosage by direct gain or loss of coding sequences [4], but several indirect mech-

anisms including alteration of non-coding RNAs [5,6] and topologically associated do-

mains [7] have been described. Since these may affect the phenotype, CNVs may threaten 

the ability to survive or, on the contrary, enhance chances of survival in disadvantageous 

environments [8]. 

 

Figure 1. Hallmarks in copy number variant (CNV) history. The 20th century saw a steady devel-

opment of methods, which finally allowed genome-wide, high-resolution CNV detection around 

the beginning of the 21st century. 

CNVs are an important cause of genomic disorders with Mendelian inheritance, and 

may also contribute to complex diseases with multifactorial etiology [9]. Since the intro-

duction of high throughput technologies for CNV detection, namely array-based compar-

ative genomic hybridization (aCGH) and massively parallel sequencing (MPS), the num-

ber of novel variants is constantly increasing. However, a lot of detected CNVs are still 

categorized as variants of uncertain significance (VUS) with unknown clinical impact [4], 

suggesting a need for their reliable classification. Therefore, all available information has 

been translated to the standards of interpretation and reporting of constitutional CNVs as 

recently published by the American College of Medical Genetics and Genomics and the 

Clinical Genome Resource [10]. However, the age of high throughput technologies comes 

with an ever increasing amount of generated data. Researchers must continuously im-

prove bioinformatic softwares and decision support tools to help clinicians handle the 

problem. 

2. Methods of CNV Detection 

From conventional cytogenetic methods through hybridization- and PCR-based 

techniques, up to MPS, CNV detection methods have been through a long evolution, af-

fecting several aspects of progress in CNV research (Figure 1). Cytogenetic techniques 

were the first methods for CNV detection, based on visual inspection of chromosomes. 

Improvements led to the gradual lowering of detection limits, from numerical anomalies 

of whole chromosomes to CNVs of a few Mb in size. Introduction of molecular-biology 

methods, especially hybridization followed by Southern-blotting, allowed detection of 

mid-sized CNVs in the range of several kb. Later, amplification-based PCR methods to-

gether with their modifications and a wide range of associated detection techniques 

brought analytical resolution to single nucleotides, with upper limits of the detection 

range at hundreds of kb or a few Mb. Completely new possibilities were introduced by 

housing molecular hybridization techniques with cytogenetic methods and with microar-

ray-based methods, but also with the invention of MPS. The latter two allowed the analy-

sis of the whole size range of CNVs in single runs, at least theoretically, and in scales of 

whole genomes. 
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2.1. Cytogenetic Techniques and Their Most Common Modifications 

Although chromosomes in plant and animal cells were first observed in the 19th cen-

tury [11], and CNVs were microscopically detected in Drosophila in the early 20th century 

[12], it took the first half of the 20th century to assess the human diploid karyotype [13]. 

This was finally allowed by several methodological improvements in karyotyping, lead-

ing to an establishment of conventional cytogenetic techniques which are still in general 

use. These include the use of cells cultured from the tested tissue, arresting of dividing 

cells in metaphase by colchicine, treatment by a hypotonic solution to spread the chromo-

somes, fixation of chromosomes on a glass slide for examination under a light microscope, 

and subsequent counting and grouping of chromosomes according to their morphological 

features [14]. A revolutionary step in human cytogenetics came with the introduction of 

different chromosome banding techniques revealing specific chromosomal patterns, in-

cluding fluorescence-based Quinacrine banding (Q-banding) [15] and Giemsa staining (G-

banding) [16], which have become the most widely used banding methods. Following the 

advent of cytogenetic and banding techniques, discoveries were quickly made with re-

gard to CNVs associated with human pathologies. However, karyotyping techniques 

available in the 1960s only allowed detection of gross numerical and morphological ab-

normalities, because the resolution of light microscopes was limited to imbalances larger 

than 5 Mb. 

Conventional cytogenetic techniques combined with molecular techniques such as 

hybridisation led to the emergence of molecular cytogenetics, the main methods being 

fluorescence in situ hybridization (FISH) [17] and comparative genomic hybridization 

(CGH), both still requiring fluorescent microscopy [18]. FISH is based on hybridisation of 

sequence specific fluorescently labelled probes with subsequent microscopic detection of 

a given fluorescent signal that indicates the presence or absence of specific target DNA 

sequences [17]. This technique has undergone several modifications, from single-event-

specific tests up to chromosome painting, making it possible to detect individual loci as 

small as 10 kb [19]. Certain limitations of conventional cytogenetics and FISH, mainly 

those of resolution, led to the development of CGH for CNV detection [18]. By the com-

parison of fluorescent signals generated from DNA of the tested and control samples, 

along the chromosomes to which they were hybridised, CGH is capable of identifying 

increased or decreased copy numbers of sequences at least ~3–10 Mb in size [20]. 

2.2. Methods of Molecular Biology 

Molecular-biology methods such as Southern blot hybridization offer higher resolu-

tion than cytogenetics [21]. The principle of Southern blotting relies upon fragmentation 

of DNA with a restriction endonuclease and separating fragments by gel electrophoresis. 

The fragments are transferred to a membrane and hybridized to appropriate probes. Copy 

number changes are visible as differential hybridization intensities or as altered mobility 

of the fragments. Although for many years, Southern blotting was the standard method 

for the detection of deletions or amplifications in the range of 5–500 kb [22], it is a labori-

ous, time-consuming method that requires large amounts of high-quality DNA [23]. 

A tremendous improvement in the screening of CNVs came with the introduction of 

microarray-based methods, specifically in conjunction with comparative genomic hybrid-

ization, where DNA samples extracted from the tested and reference cells are cohybrid-

ized to an array of fixed oligonucleotide probes instead of metaphase chromosomes [24]. 

The aCGH provides genome-wide coverage at a much higher resolution of 10–25 kb [25] 

or even >500 bp if high-density arrays are used [26]. Despite some limitations in resolution 

and accuracy, this made aCGH a standard in CNV detection [27]. 

PCR-based methods may either come in the form of conventional two- or three-pri-

mer based protocols or multiplexed assays. CNVs may be detected by PCR-based proto-

cols through the change of: (i) migrational properties during agarose gel or other types of 
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electrophoresis [28]; (ii) amplification cycles required to achieve a relative threshold fluo-

rescent intensity in real-time quantitative PCR (qPCR) assays [29,30]; (iii) relative fluores-

cent signal intensities in capillary electrophoresis when using quantitative-fluorescent 

PCR (QF-PCR) [31] or multiplex ligation-dependent probe amplification (MLPA) tech-

niques [32]; (iv) denaturation properties reflected in melting temperatures or melting 

curve shapes during conventional or high-resolution melting analysis [33]. All of these 

methods are more or less convenient for the targeted detection of a limited number of 

CNVs in a relatively wide range of length from tens of bp up to Mb and even whole chro-

mosomes at low cost and fast turnaround time [34]. However, each of these methods also 

has its own advantages and limitations. A more recently introduced alternative to the tra-

ditional qPCR in CNV detection is the droplet digital PCR (ddPCR). In this method, tem-

plate DNA is diluted and partitioned into thousands of nano-scale droplets of uniform 

volume, allowing for absolute quantification of target copy numbers without the need for 

a standard assay, making results easier to interpret and less error-prone than regular 

qPCR [35]. Another PCR-based method is multiplex amplifiable probe hybridization 

(MAPH) using oligonucleotide probes that hybridize to a specific region in the genome. 

Hybridized probes are amplified and the amount of each amplification product is propor-

tional to the copy number of the corresponding sequence [36]. MAPH enables the sensi-

tive detection of CNVs as small as 150 bp [37]. Even more sensitive and easier to use is 

MLPA developed to determine the copy number of multiple genomic DNA sequences (up 

to 60 probes) in a single reaction with resolution from a single nucleotide difference. The 

probes hybridized to the sample DNA are ligated and amplified, resulting in fragments 

of a unique length which can be separated and quantified by capillary electrophoresis [32]. 

Therefore, MLPA is a cost-effective method that can be performed with equipment pre-

sent in most molecular biology laboratories. 

Although the first generation of DNA sequencing (1GS) technologies, specifically 

Sanger sequencing, was generally considered to be the gold standard in DNA diagnostics, 

CNVs represent specific challenges not easily dealt with when using this method. Their 

detectability strongly depends on the length and type of the CNV, as well as on its position 

with regard to the used amplification primers (for more details on the possible effect of 

CNVs on reliability, see the next subheading). Since 2005, when the first platforms of sec-

ond-generation sequencing (2GS) technology became available [38], methods based on 

MPS have undergone several modifications, their cost ever on the decrease [39]. In current 

times, 2GS represents a valuable tool for clinical diagnostics and provides a sensitive and 

accurate approach for the detection of the major types of genomic variations, including 

CNVs [40]. There are three main strategies for 2GS-based CNV analysis, namely whole-

genome, whole-exome, and targeted sequencing. Due to the limited length of DNA frag-

ments sequenced by 2GS sequencers, variation is detected by abnormalities in the affected 

areas using robust statistical and bioinformatic processing [41]. Read-depth methods 

highlight regions with an irregular number of sequenced fragments: a loss is seen as a 

lower, and a gain as a higher than expected amount of a particular segment. Read-pair 

and split-read approaches analyze fragments with discordant alignments of sequenced 

fragments, where portions of a single fragment are aligned to unexpected sites in the ref-

erence genome. While the above methods directly analyze reads mapped to the reference 

genome, assembly-based methods compare longer sections of an individual’s genome, 

called contigs. This approach may reveal more complex genome rearrangements, but ge-

nome assembly is computationally more intensive and requires substantially higher ca-

pacity. Whole-genome sequencing combined with sophisticated computational strategies 

improved CNV detection, allowing even base-pair resolution of breakpoints [42]. On the 

other hand, whole-exome sequencing targets only the protein-coding part of the genome. 

However, since most of the known disease-causing mutations fall into this category, ex-

ome sequencing significantly reduces sequencing cost in medical applications and is still 

sufficiently powerful. Moreover, targeted sequencing provides a greater depth of cover-

age in regions of interest for an even lower cost [43]. 



Appl. Sci. 2021, 11, 819 5 of 16 
 

Third-generation sequencing (3GS) technologies (e.g., single-molecule real-time se-

quencing [44] and nanopore sequencing [45]) bring promise for better characterization of 

genomic structural variants due to longer reads [46] that can be more confidently aligned 

to repetitive sequences, often mediating the formation of structural variants [47]. While 

both microarray and 2GS techniques are based on complex laboratory procedures which 

require several days to obtain results [48], nanopore-based 3GS provides pocket-sized, 

low-cost devices that usually take from 24 to 48 h to run, with reads generated continu-

ously, so data can be used for processing and further analysis in real-time during the on-

going sequencing process [45]. Moreover, the method can be combined with a rapid li-

brary preparation kit capable of obtaining ready to sequence genomic DNA in 10 min. 

Data generated in the first tens of minutes of a run are sufficient to detect large chromo-

somal alterations with a resolution in the order of tens of Mb. Data produced in the first 

6–12 h of a sequencing run can be used to identify CNVs with an accuracy comparable to 

currently available array-based methods, and are capable of predicting the allelic fraction 

of genomic alterations with high accuracy [42]. The problem with CNV breakpoint iden-

tification often encountered in PCR- or array-based methods can also be solved by break-

point sequencing [49]. Using 3GS devices, it will soon be possible to perform a cost-effec-

tive high-resolution molecular karyotyping of the human genome within an hour from 

sample extraction, allowing ultra-fast analyses in fields where time matters, such as pre-

cision oncology and prenatal diagnostics [42]. 

When considering in silico tools to extract CNV genotype information from gener-

ated data, nearly all of the available methods have their dedicated commercial tools, from 

cytogenetic karyotyping, through MLPA, up to aCGH. The bioinformatic tools for pro-

cessing MPS data are, however, still under intensive development and diversification (Ta-

ble 1). While both 2GS and 3GS are technically capable of detecting CNVs in a wide range 

of length, not each size is identifiable using the same bioinformatics pipeline and different 

variants may require differently suited tools [50]. To identify smaller structural variations 

spanning several nucleotides, conventional variant callers, such as the GATK Haplotype-

Caller [51], are generally suitable, while large CNVs exceeding read lengths are typically 

identified based on a disproportion of sequenced reads from the genomic region of a par-

ticular CNV [52]. In conclusion, since each CNV detecting method has its advantages and 

limitations, the choice for an appropriate technique depends on the application, required 

resolution, available lab equipment, workload, and budget. 

Table 1. Bioinformatic tools for detection of CNVs from next generation sequencing-based genomic data. Several tools are 

capable of detection and annotation of CNVs at the same time (e.g., iCopyDAV, SG-ADVISER-CNV, DeAnnCNV), so they 

are listed in the next table. WES (whole-exome sequencing); WGS (whole-genome sequencing). 

Tool Description Operating System Availability Reference 

Wisecondor Wise-

condorX 

A tool for detecting small sub-chromosomal and chromosomal genetic CNV al-

terations in fetal DNA using low coverage sequencing of maternal cfDNA. It al-

lows less-invasive detection of chromosomal CNV changes at a resolution com-

parable to conventional cytogenetic analysis. Moreover, no re-sequence healthy 

samples are needed for normalization. 

Mac OS X 

Linux 

Free for non-

commercial use 
[53,54] 

ExomeCNV 

ExomeCNV is based on an algorithm using statistics of sequence coverage and 

B-allele frequencies for CNV and loss of heterozygosity estimation by mapping 

short sequence reads. ExomeCNV was the first tool implemented to detect 

CNVs from WES data. 

MS Windows 

Mac OS X 

Linux 

Free-software li-

cense 
[55] 

SAvvyCNV 

A tool that uses off-target or non-target reads data from targeted panel and ex-

ome sequencing to call CNVs genome-wide. SavvyCNV may call CNVs with 

high precision and recall. 

MS Windows 

Mac OS X 

Linux 

Free-software li-

cense 
[56] 

CopywriteR 

A tool that can generate high-quality DNA copy number profiles using off-tar-

get reads from targeted sequencing data. In addition, CopywriteR allows ex-

tracting accurate copy number information without a reference. 

MS Windows 

Mac OS X 

Linux 

Free-software li-

cense 
[57] 

DECoN 

A fast and accurate tool for exon CNV detection from whole exons in targeted 

panel analysis, capable of detecting small intra-exon variants. It provides qual-

ity checks and visualization to make it suitable for clinical use. 

MS Windows 

Mac OS X 

Linux 

Freely available [58] 
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CNVkit 

A software toolkit for detection, analysis, and visualization of CNVs, able to es-

timate CNVs and alterations genome-wide from high-throughput sequencing 

data. It implements a pipeline for CNV detection that takes advantage of both 

on- and off-target reads and applies a series of corrections to improve copy 

number calling accuracy. 

Mac OS X 

Linux 

Free software li-

cence 
[59] 

Canvas SPW 

Canvas SPW (Small Pedigree Workflow) is a tool for CNV calling that serves to 

identify germline and de novo CNVs from pedigree sequencing data. In addi-

tion, it infers genome-wide parameters such as cancer ploidy, purity and heter-

ogeneity. 

MS Windows 

Linux 

Free-software li-

cense 
[60] 

MFCNV 

A computational method that (i) considers the intrinsic correlations among ad-

jacent positions in the genome, (ii) calculates read depth, GC-content bias, base 

quality, and correlation value for each genome bin, and (iii) trains a neural net-

work algorithm to predict CNVs. 

NA 
Free-software li-

cense 
[61] 

VarScan 2 

Analysis tool for the detection of somatic mutations and CNVs in exome data 

from tumor-normal pairs. The algorithm reads data from both samples simulta-

neously; a heuristic and statistical algorithm detects sequence variants and clas-

sifies them by somatic status (germline, somatic, or LOH); while a comparison 

of normalized read depth delineates relative copy number changes. 

MS Windows 

Mac OS X 

Linux 

UNIX 

Free for non-

commercial use 
[62] 

ADTEx 

ADTEx (Aberration Detection in Tumour Exome) is a method to infer somatic 

CNVs and genotypes using WES data from paired tumour/normal samples. The 

algorithm uses hidden Markov models to predict CNV counts, genotypes, poly-

ploidy, aneuploidy, cell contamination, and baseline shifts. 

Linux 
Free-software li-

cense 
[63] 

ReadDepth 

An R package for inferring CNVs from short-read sequencing data. The algo-

rithm uses a statistical model that accounts for overdispersed data and does not 

require reference sample data. It includes a method for increasing the resolution 

from low-coverage experiments by utilizing breakpoint information from 

paired end sequencing to do positional refinement. For calling somatic CNVs 

from matched tumor/normal pairs, the authors of ReadDepth recommend a 

copyCat package that is loosely based on readDepth. 

MS Windows 

Mac OS X 

Linux 

Free software li-

cence 
[64,65] 

CONDEL 

CONDEL (CONsensus DELeteriousness) is a method for detecting CNVs from 

single tumor samples using high-throughput sequence data. It utilizes a novel 

statistic in combination with a peel-off scheme to assess the statistical signifi-

cance of genome bins, and adopts a Bayesian approach to infer copy number 

gains, losses, and deletion zygosity based on statistical mixture models. 

MS Windows 

Mac OS X 

Linux 

Freely available [66] 

CNV_IFTV 

A method that uses a novel isolation forest algorithm and variation-based de-

tection of CNVs from short-read sequencing data. It is a reliable tool even for 

low-level coverage and tumor purity. 

MS Windows 

Mac OS X 

Linux 

Freely available [67] 

Control-FREEC 

A tool for detection of copy-number changes and allelic imbalances (including 

LOH) using deep-sequencing data. Control-FREEC automatically computes, 

normalizes, and segments copy number and beta allele frequency profiles, then 

calls CNVs and LOH. The control sample is optional for WGS data but manda-

tory for WES or targeted sequencing data. 

MS Windows 

Linux 

Free software li-

cence 
[68] 

EXCAVATOR 

EXCAVATOR2 

EXCAVATOR (EXome Copy number Alterations/Variations annotATOR) a tool 

for the detection of CNVs from WES data combines a three-step normalization 

procedure with a hidden Markov model algorithm and a calling method that 

classifies genomic regions into five copy number states.  

EXCAVATOR2 is an enhanced version of EXCAVATOR. It is a read count 

based tool that exploits all the reads produced by WES experiments to detect 

CNVs with a genome-wide resolution. 

Mac OS X 

Linux 
Freely available [69,70] 

XCAVATOR 
A software package for the identification of genomic regions involved in CNVs 

from short and long reads in whole-genome sequencing experiments. 

Mac 

Linux 

Free-software li-

cense 
[71] 

NA, not available. If applicable, operating systems for individual tools were collected from https://bioinformat-

icshome.com. If applicable, availability/license information were collected from https://github.com or from the home page 

of individual tools. 

2.3. Techniques Possibly Affected by the Presence of Undetected CNVs 

In addition to detection possibilities, another aspect worth discussing is that certain 

methods are at risk of giving inferior results due to the presence of undetected CNVs. 

Such methods include Southern blotting and PCR as well as both 1GS and 2GS. PCR and 

PCR-based sequencing methods are prone to allelic dropout caused by the presence of 

deletions in the analyzed region, especially if affecting one of the primer binding regions, 
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or may falsely show hemizygous instead of homozygous alleles if the entire amplified 

region is deleted. They may also be affected by the presence of false-positive variants, such 

as unknown homologous copies of the analyzed region (e.g., pseudogenes or pseudoex-

ons) with high but not full sequence homology, like in the case of the CFTR pseudoexon 

2 present in the GRCh38, but not in earlier versions of the human reference genome [50]. 

Some of these effects may be prevented, eliminated, or at least attenuated in some 

ways, depending on whether the presence of a certain CNV is expected or unforeseen. 

These methods include but are not limited to: (i) checking the region of interest for specific 

CNVs by an alternative technique (e.g., sequencing of single genes may be complemented 

by MLPA, while sequencing of whole exomes and genomes may incorporate a CNV-spe-

cific bioinformatic variant calling pipeline to complement conventional variant calling of 

small variants); (ii) using two or more complementing assays based on different principles 

and being liable to different biases; (iii) careful evaluation and reporting of results by well 

trained users who are familiar with the used technique, including thorough quality con-

trol and reporting only unambiguous findings truly supported by the results ( for exam-

ple, not reporting variants as homozygous, when detected using sequencing with PCR 

preamplification, unless other heterozygous variants in the same amplicon were not de-

tected, or until the possible presence of CNVs is checked); or (iv) at least by disclosing the 

possible biases in the results. 

3. Potential Biomedical Applications of CNV Detection 

CNVs can be analyzed from different biological sources, offering various valuable 

information, so there are plenty of biomedical applications where CNV detection may be 

useful. CNVs have been studied in neuropsychiatric [72,73], developmental [74], and car-

diovascular diseases [75]. Several studies have identified the role of CNVs in common 

diseases such as coronary artery disease or in rarer events such as sudden cardiac death. 

Such findings may be useful for clinicians for disease classification and detection in the 

future, particularly in the age of the whole genome sequencing [76]. 

On the other hand, CNVs have been identified as susceptibility factors for autoim-

mune diseases such as systemic lupus erythematosus (SLE). The human C4 gene is one of 

the most striking examples of genetic diversity, due to a great variation in number and 

size of gene copies between individuals. Low copy numbers of the C4 and C4A gene are 

significant risk factors for the development of SLE in different populations. Meta-analysis 

by Li et al. showed that <4 copies of the C4 gene increase susceptibility to autoimmune 

diseases with an odds ratio of 1.46 (95% CI, 1.19–1.78) [77]. In addition, C4A has been as-

sociated with disease severity. Thus, determination of C4 gene copy numbers may be use-

ful in sub-phenotyping and managing SLE patients [78]. 

CNVs obtained from blood cells or tissues are suitable for the identification of 

germline or somatic variants. Tissue biopsy is a well-established procedure in cancer di-

agnosis for identification of human genomic alterations. However, this technique is inva-

sive, time-consuming, not sufficient to examine the entire tumor profile, and not applica-

ble in the follow-up of cancer treatment [79]. The current trend is moving towards non- or 

less-invasive sampling, such as liquid biopsy [80]. In combination with whole-genome 

copy number analysis, which does not require any prior knowledge about the character-

istics of the primary tumor genome, it represents a promising clinical tool. Heitzer et al. 

reviewed approaches for analyses of somatic copy number alterations at a genome-wide 

scale [81]. Both circulating tumor cells (CTCs) and cell-free DNA (cfDNA) were shown to 

be powerful sources in CNV profiling. 

Ni et al. hypothesize that copy number changes are key events of metastasis. They 

observed cancer-associated CNVs in exomes of CTCs revealing information needed for 

individualized therapy, such as drug resistance and phenotypic transition and suggest 

that CNVs at certain genomic loci have the potential for CTC-based cancer diagnostics 

[82]. Several studies demonstrated that the detection of ALK gene rearrangement in non–

small-cell lung cancer (NSCLC), a predictive biomarker for crizotinib treatment, may be 
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performed using CTCs. The same group also reported that CTCs can be used for sensitive 

detection of ROS1 rearrangement in NSCLC patients. CTCs from ROS1-rearranged pa-

tients show heterogeneity of ROS1 gene abnormalities and elevated numerical chromoso-

mal instability, suggesting a potential mechanism for resistance to crizotinib, a known 

ROS1-inhibitor [83]. 

Since tumor cells frequently undergo necrosis, they release tumor-specific cfDNA 

(ctDNA) into body fluids such as blood, urine, saliva, etc. [84]. It was shown that quanti-

fication of tumor-specific rearrangements in ctDNA by ddPCR is highly accurate for 

postsurgical discrimination between patients with an eventual diagnosis of clinical me-

tastasis and long-term disease-free patients, with a sensitivity of 93% (95% CI, 66–100%) 

and specificity of 100% (95% CI, 61–100%). Moreover, ctDNA-based detection preceded 

clinical detection of metastasis in 86% of patients with an average lead time of 11 months, 

whereas patients with long-term disease-free survival had undetectable ctDNA postoper-

atively [85]. Peng et al. presented a method enabling CNV detection from a 150-gene panel 

using a low amount of ctDNA. They demonstrated that their CNV pipeline can detect 

EGFR, ERBB2, and MET amplification from ctDNA samples with high specificity and con-

cordance with corresponding tissue-based whole-exome results. The concordance rate for 

EGFR, ERBB2, and MET CNVs was 78%, 89.6%, and 92.4%, respectively [86]. The analysis 

of circulating nucleic acids may also be helpful in other diseases. Since cfDNA biomarkers 

are known to be important in many autoimmune and multifactorial diseases such as IBD 

[87], cfDNA could also be used for studying CNVs in such disorders. 

CNVs are also useful in the diagnostics of rare and common diseases or predisposi-

tions. This may be performed as prenatal testing through direct testing of the fetus or 

indirectly using maternal blood. Detection of CNVs is a common part of modern non-

invasive prenatal testing (NIPT), most commonly based on low-coverage whole-genome 

sequencing analysis of cell-free fetal DNA (cffDNA) from maternal plasma [88]. This ap-

proach is useful for the detection of chromosomal aneuploidy and microdeletion syn-

dromes, including DiGeorge, Prader-Willi/Angelman, 1p36, Cri-du-chat, and Wolf-

Hirschhorn syndrome [52]. Apart from fetal CNVs, maternal ones can also be detected by 

this method, although current analyses generally do not interpret these findings. Maternal 

aberrations are potentially harmful to the fetus, so some authors suggest reporting these 

variants if clinically relevant. On the other hand, performing NIPT may lead to the inci-

dental diagnosis of maternal diseases, such as previously unrecognized pathologies, late-

onset diseases and predispositions arising from maternal germline CNVs, or malignancies 

and systemic autoimmune diseases presenting with somatic CNVs. Thus, these aspects of 

CNV detection also affect conventional perception of incidental and secondary findings 

arising via genetic testing, which are now extensively discussed [89]. Giles et al. reported 

that 80% of genetic counselors recognized it would be beneficial to use NIPT for neoplasm 

screening, yet more than 90% affirmed that guidelines are necessary to prepare for such 

situations [90]. 

CNV detection may also find application in the evaluation of the microbiome bal-

ance, through the analysis of CNVs in metagenomes in different body parts. The human 

microbiome interacts with the host and plays an important role in many host biological 

processes [91]. Host genomic variations influence the composition of the microbiome, 

which in turn affects the health of the individual. While numerous studies have been fo-

cused on associations between the gut microbiome and specific alleles of the host genome, 

gene copy number also varies. It was shown, for instance, that duplication of the human 

AMY1 gene is associated with an increased number of oral Porphyromonas in saliva, which 

is linked to periodontitis. Gut microbiota of these individuals had increased abundance of 

resistant starch-degrading microbes, produced higher levels of short-chain fatty acids, 

and drove higher adiposity when transferred to germ-free mice [92]. This case demon-

strated that even seemingly harmless variants in the host genome could affect the health 

of an individual. 
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Current knowledge suggests that it is important to analyze CNVs not only in human 

cells, but also in the microbiome. Taxonomic characterization of the human microbiota is 

often limited to the species level, however, each microbial species represents a large col-

lection of strains that may contain considerably different sets or copy numbers of genes 

resulting in potentially distinct functional capacities. This intra-species variation is caused 

by deletion and duplication events, which were shown to be prevalent in the human gut 

environment, with some species exhibiting CNVs in >20% of their genes. This variability 

is especially prevalent in disease-associated genes involved in important functions, such 

as transport and signaling. A study by Greenblum et al. showed obesity to be associated 

with higher copy numbers of thioredoxin 1 in Clostridium sp., an increased copy number 

of an MFS transporter gene in the Roseburia inulinivorans genome cluster, and increased 

HlyD in Bacteroides uniformis associated with IBD-afflicted individuals. According to the 

authors, the analysis of species composition alone is not sufficient to capture the true func-

tional potential of the microbiome because it may fail to capture important functional dif-

ferences, so the analysis of intra-species variation in microbial communities is crucial [93]. 

4. Clinical Interpretation of CNVs 

As detailed above, CNVs are an important source of normal and pathogenic varia-

tion. Pathogenic CNVs are typically large and contain multiple genes, significantly en-

riched in developmental genes and genes with greater evolutionary copy number conser-

vation across mammals. On the other hand, genes found in benign CNVs have more var-

iable copy numbers, suggesting that dosage sensitivity of genes is a predominant causa-

tive factor for CNV pathogenicity [94]. In everyday practice, laboratory diagnosticians, 

genetic counselors, and clinical geneticists need to distinguish pathogenic CNVs from be-

nign ones in their patients, and such interpretation can be challenging. Many recurring 

CNVs are already classified into one of the five main classes of clinical impact (benign, 

likely benign, VUS, likely pathogenic, and pathogenic), a uniformized system commonly 

used for the interpretation of other sequence variants as well [95]. However, progress in 

the detection of CNVs resulted in a growing amount of novel CNVs that need further 

analysis to determine their potential clinical impact, while between the two clear extremes 

(benign and pathogenic), a wide spectrum of CNVs lacking evidence to support their clin-

ical significance are classified as VUS [4]. This led to a demand for a more convenient 

annotation and classification of such CNVs. Even though the prediction of the clinical im-

pact of CNVs is a challenge, there are several in silico prediction or decision support tools 

(Table 2) for CNV classification to help laboratory diagnosticians, genetic counselors and 

clinicians [96]. 

Table 2. Decision support tools for annotation and/or classification of CNVs. SV (structural variation); WGS (whole-ge-

nome sequencing); WES (whole-exome sequencing); TADs (topologically associated domains). 

Tool Description Operating System Availability Reference 

AnnotSV 

A standalone program designed for annotating and ranking SVs. The tool com-

piles functionally, regulatory and clinically relevant information and aims at 

providing annotations useful to (i) interpret the potential pathogenicity of SVs 

and (ii) filter out potential false positives. 

MS Windows 

Mac OS X 

Linux 

Free-software li-

cense 
[97] 

iCopyDAV 

Integrated platform for CNV detection, annotation and visualization enabling 

the user to identify CNVs in whole-genome NGS data. iCopyDAV consists of 

seven modules for (i) calculating optimal bin size; (ii) data preparation; (iii) 

data pre-treatment; (iv) segmentation; (v) variant calling; (vi) CNV annotation; 

(vii) plotting CNVs across the chromosome. 

Mac OS X 

Linux 
Freely available [98] 

AluScanCNV2 

An R package for CNV calling and machine learning-based cancer risk predic-

tion with NGS data. It uses Geary–Hinkley transformation-based comparison 

of the read-depth. 

MS Windows 

Mac OS X 

Linux 

Free-software li-

cense 
[99] 

CNVAnnotator 
A web service that displays genomic overlaps of the input coordinates with 

built-in databases of CNVs and SNPs from genome-wide association studies 

MS Windows 

Mac OS X 

Linux 

Free access [100] 
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and additional features such as ENCODE regulatory elements, cytobands, seg-

mental duplications, genome fragile sites, pseudogenes, promoters, enhancers, 

CpG islands, and methylation sites. 

Results are free 

to academic re-

search. Not for 

profit 

cnvScan 

A CNV screening and annotation tool to improve the clinical utility of compu-

tational CNV prediction from exome sequencing data. The screening step eval-

uates CNV prediction using quality scores and refines it using an in-house 

CNV database. The annotation step uses multiple external databases from 

three groups: gene and functional effect datasets, known CNVs from public da-

tabases and clinically significant datasets. 

Linux 
Free-software li-

cense 
[101] 

CNspector 

A web-based tool for the visualization and clinical diagnosis of CNVs from 

NGS data. It represents a multi-scale interactive browser that shows CNVs in 

the context of other relevant genomic features to enable faster clinical report-

ing. 

MS Windows 

Mac OS X 

Linux 

Free-software li-

cense 
[102] 

CNView 

A tool for normalized visualization, statistical scoring and annotation of CNVs 

from population-scale WGS datasets having six sequential steps: (i) matrix fil-

tering, (ii) matrix compression, (iii) intra-sample normalization, (iv) inter-sam-

ple normalization, (v) coverage visualization, and (vi) genome annotation. 

MS Windows 

Mac OS X 

Linux 

Free-software li-

cense 
[103] 

SVScore 

A VCF annotation tool that predicts the impact of SVs based on SNP patho-

genicity scores across relevant genomic intervals for each SV. The tool assigns a 

very simple aggregate pathogenicity score to an SV based on overlapping SNP 

pathogenicity scores. Multiple options for aggregation are supported: maxi-

mum, sum, mean and mean of the top N scores. 

Linux 
Free-software li-

cense 
[104] 

SG-ADVISER-CNV 

A suite (consisting of an annotation pipeline and a Webserver) for CNV detec-

tion and interpretation by performing in-depth annotations and functional pre-

dictions for CNVs. The tool is designed to allow users with no prior bioinfor-

matics expertise to handle large volumes of CNV data. 

MS Windows 

Mac OS X 

Linux 

NA [105] 

ClinTAD 

A browser-based tool for quick evaluation of the clinical relevance of a CNV in 

the context of TADs. It allows to input a chromosome number, genomic coordi-

nates, and phenotypic information and relate this data to nearby TAD bounda-

ries and genes. 

MS Windows 

Mac OS X 

Linux 

Freely available [106] 

CNVScope 

A tool for CNV relationship data analysis and visualization, allowing users to 

create interaction maps, discover CNV map domains, annotate gene interac-

tions, and create interactive visualizations of these CNV interaction maps. 

MS Windows 

Mac OS X 

Linux 

Free-software li-

cense 
[107] 

DeAnnCNV 

A tool for online detection and annotation of CNVs from WES data. It can ex-

tract the shared CNVs among multiple samples and also provides supporting 

information for the detected CNVs and associated genes. 

MS Windows 

Mac OS X 

Linux 

Freely available [108] 

ClassifyCNV 

An easy-to-use tool that implements the 2019 ACMG classification guidelines 

to assess CNV pathogenicity. It uses genomic coordinates and CNV type as in-

put and reports a clinical classification for each variant, a classification score 

breakdown, and a list of genes of potential importance for variant interpreta-

tion. 

Mac OS X 

Linux 

UNIX 

Free for aca-

demic and re-

search use only 

[109] 

NA, not available. If applicable, operating systems for individual tools were collected from https://bioinformat-

icshome.com. If applicable, availability/license information were collected from https://github.com or from the home page 

of individual tools. 

It is essential to produce consistent, evidence-based clinical classification across la-

boratories and accurate clinical interpretation of CNVs, which requires not only appropri-

ate methods to evaluate genomic content but also correlating clinical findings with reports 

in the medical literature. To ensure this, existing standards for evaluating CNVs were re-

cently updated, and detailed recommendations for the interpretation and reporting of 

constitutional CNVs were published [10]. These recommendations comprise a semiquan-

titative point-based scoring system in which evidence categories with assigned relative 

weight were determined. When evaluating individual CNVs, genomic content, dosage 

sensitivity, predicted functional effect, clinical overlap with patients in the literature, evi-

dence from case and control databases (Table 3), and de novo occurrence or inheritance 

patterns are considered [10]. Using this scoring system, any evaluated CNV should be 

assigned to one of the five above mentioned main classes of clinical impact [95]. It was 

also demonstrated that topologically associated domains, in which structural alteration 
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results in various malformations, may increase clinical suspicion of pathogenicity for var-

iants of uncertain significance. This piece of information, among others, may help in the 

clinical interpretation of CNVs that would otherwise be ignored based on current report-

ing criteria [106]. So, appropriate clinical interpretation relies on supporting evidence and, 

therefore, is still challenging. An effective way of overcoming the problem of VUS and 

achieving progress in clinical interpretation that may eventually translate to an improve-

ment in patient health care is to share data and relevant information between laboratories 

and researchers [110]. 

Table 3. Databases of common and clinically relevant genomic CNVs. The most popular databases that play a crucial role 

in variant classification are listed here. 

Database Abbreviation Description Link 

ClinVar ClinVar 
A freely accessible, public archive of reports of the relationships among 

human variations and phenotypes, with supporting evidence. 

http://www.ncbi.nl

m.nih.gov/clinvar/ 

Database of genomic structural Varia-

tion 
dbVar 

NCBI’s database of human genomic structural variations with size >50 

bp including insertions, deletions, duplications, inversions, mobile ele-

ments, translocations, and complex variants. 

https://www.ncbi.nl

m.nih.gov/dbvar/ 

DatabasE of Chromosomal Imbalance 

and Phenotype in Humans using En-

sembl Resources 

DECIPHER 
An interactive web-based database, which incorporates a suite of tools 

designed to aid the interpretation of genomic variants. 

https://deci-

pher.sanger.ac.uk 

Database of Genomic Variants DGV 
The database only contains structural variants identified in healthy con-

trol samples. 

http://dgv.tcag.ca/d

gv/app/home 

The Genome Aggregation Database gnomAD-SV 

An open resource of structural variation for medical and population ge-

netics. The gnomAD structural variant (SV) callset is available via the 

gnomAD website and integrated directly into the gnomAD Browser. 

https://gno-

mad.broadinsti-

tute.org 

Catalogue of Somatic Mutations in 

Cancer 
COSMIC 

The world’s largest source of expert manually curated somatic muta-

tion information relating to human cancers. The database combines two 

main types of data: manually curated high precision data and genome-

wide screen data, which provide extensive coverage of the cancer ge-

nomic landscape from a somatic perspective. 

https://can-

cer.sanger.ac.uk/cos-

mic 

The International Genome Sample Re-

source 
IGSR 

The International Genome Sample Resource (IGSR) was established to 

ensure ongoing usability of data generated by the 1000 Genomes Project 

and to extend the data set. 

https://www.inter-

na-

tionalgenome.org/h

ome 

Autism Chromosome Rearrangement 

Database 
ACRD 

A collection of hand curated breakpoints and other genomic features re-

lated to autism, taken from publicly available literature, databases and 

unpublished data. The database is continuously updated with infor-

mation from in-house experimental data as well as data from published 

research studies. 

http://pro-

jects.tcag.ca/autism/ 

The Chromosome Anomaly Collection NA 
This collection contains examples of unbalanced chromosome abnor-

malities without phenotypic effect. 

http://www.ngrl.org

.uk/wessex/collec-

tion/index.htm 

Mitelman Database of Chromosome 

Aberrations and Gene Fusions in Can-

cer 

NA 

The information in the database relates cytogenetic changes and their 

genomic consequences, in particular gene fusions, to tumor characteris-

tics, based either on individual cases or associations. 

https://mitelmanda-

tabase.isb-cgc.org 

NA, not available. 

5. Conclusions 

In this work, we provide an overview of CNV detection methods, from basic cytoge-

netic methods to molecular-based approaches such as aCGH or MPS. Detecting CNVs in 

individuals and within populations is essential to better understand our genome and to 

elucidate its possible contribution to disease or phenotype. The growing availability of 

sequencing technology can help to further explore these functional implications, but since 

it can yield up to several terabytes of genomic data per run, it is not possible to unlock the 

full potential of such data without the help of CNV-related bioinformatic tools. Despite 

all the improvements in methodology and software, clinical interpretation of CNVs still 

remains a major challenge. Moreover, due to improving resolution, the number of novel 

structural variants is constantly increasing and this led to a demand for more convenient 
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tools designed for storing, searching, annotating and evaluating CNV-related data to in-

crease practical value for researchers, laboratory diagnosticians and clinical geneticists 

facing the challenging task of correctly interpreting the clinical impact of CNVs. 
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