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A B S T R A C T

Although massively parallel sequencing (MPS) is becoming common practice in both research and routine
clinical care, confirmation requirements of identified DNA variants using alternative methods are still topics of
debate. When evaluating variants directly from MPS data, different read depth statistics, together with specia-
lized genotype quality scores are, therefore, of high relevance. Here we report results of our validation study
performed in two different ways: 1) confirmation of MPS identified variants using Sanger sequencing; and 2)
simultaneous Sanger and MPS analysis of exons of selected genes. Detailed examination of false-positive and
false-negative findings revealed typical error sources connected to low read depth/coverage, incomplete re-
ference genome, indel realignment problems, as well as microsatellite associated amplification errors leading to
base miss-calling. However, all these error types were identifiable with thorough manual revision of aligned
reads according to specific patterns of distributions of variants and their corresponding reads. Moreover, our
results point to dependence of both basic quantitative metrics (such as total read counts, alternative allele read
counts and allelic balance) together with specific genotype quality scores on the used bioinformatics pipeline,
stressing thus the need for establishing of specific thresholds for these metrics in each laboratory and for each
involved pipeline independently.

1. Introduction

Since the costs of DNA sequencing are continually dropping (Erlich,
2015; Wetterstrand, 2018), whole-exome or even whole-genome se-
quencing are becoming a common practice in both research and routine
clinical care (van El et al., 2013). Reasonably, methods offering mas-
sively parallel sequencing (MPS) matured during the last decade (Green
et al., 2017; Shendure et al., 2017), both in technological and data
processing aspects, including the bioinformatic pipelines that are gen-
erally used for identification of genomic variation causing phenotypic
trait of interest. This step, moreover, shifted from simple counting of
alleles among sequencing reads and their relative abundance to

sophisticated probabilistic measures of uncertainty (Nielsen et al.,
2011; Sandmann et al., 2017). These allows to combine prior in-
formation from reference data, such as allelic frequencies in the general
population and linkage disequilibrium, with information about errors
that may have been introduced during the whole process. Posterior
probabilities as measure of uncertainty, are usually reported in a form
of a genotype quality score. Moreover, several additional tests, such as
local realignments and post hoc filtering, can be implemented to further
improve the accuracy of genotype calls (Nielsen et al., 2011). Although
high-quality and accurate single nucleotide variants (SNVs) and small
insertion-deletion (indels) calls can be observed even in the level of
individual sequencing reads (Budis et al., 2019a), there are still certain
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inconsistencies about the opinions regarding the necessity to confirm
MPS based variant calling results using conventional methods. This is a
specifically important question in clinical settings with medically re-
levant findings, in connection with which the American College of
Medical Genetics and Genomics (ACMG) guidelines published in 2013
recommended “that all disease-focused and/or diagnostic testing include
confirmation of the final result using a companion technology” (Rehm et al.,
2013). Few years later, in 2015, the College of American Pathologists
(CAP) suggested “to give laboratories performing NGS-based assays flex-
ibility in determining when confirmatory testing should be performed” and
“how this testing is performed” (Aziz et al., 2015). Published larger scale
studies either claim the need for independent confirmation (Mu et al.,
2016) or suggest that it is not necessary to perform confirmatory testing
(Beck et al., 2016; Schenkel et al., 2016), but all of them seems to agree
that the necessity and relevant threshold establishments should be de-
fined in each laboratory and for each involved pipeline independently
(Li, 2014), further emphasizing the need for specific validation pro-
cesses (Matthijs et al., 2016). Thorough initial validation processes of
entire pipelines are of high importance, especially because of actually
existing high degree of variability in how different laboratories estab-
lish, combine, configure and validate their bioinformatic pipelines (Roy
et al., 2018). In addition, reliability of variant calls seems to gain spe-
cific relevance in the upcoming era of complex interpretation of
genomic results, going beyond conventional monogenic diagnostics
towards evaluation of overall genomic mutational burden of individual
patients or tumors (Morganti et al., 2019) and genome-wide polygenic
risk scores for complex disorders (Khera et al., 2018). Reasonably, in-
dependent evaluation of hundreds or thousands of clinically relevant
variants is not feasible for individual patients in routine clinical care.

The aim of this manuscript is, therefore, to report some of our
specific findings which could help to get more familiar with some
specific aspects of this topic, especially of issues connected to false-
positive and false-negative findings having a variety of different sources
of errors. These could help those professionals who are intended to
perform pipeline validations or who are deciding about to perform
variant confirmations using complementary methods.

2. Materials and methods

To characterize the validity of MPS based variant calling we per-
formed several MPS based diagnostic tests in a timeframe of several

years in which potentially clinically relevant findings underwent Sanger
confirmatory sequencing. For the present study we retrospectively
analyzed data primarily generated for these mentioned purposes. The
final data set reported here, therefore, represents different data sets in
which we simultaneously completed both MPS sequencing: IonTorrent
PGM (Thermo Fisher Scientific, Waltham, MA) or Illumina MiSeq/
NextSeq (Illumina, Inc. San Diego, CA) and Sanger sequencing (ABI
Prism Genetic Analyzer 3130xl; Applied Biosystems, Foster City, CA)
for the selected patients, genes and/or variants. In addition, original
data analyses were performed using a heterogeneous combination of
algorithms and pipelines (Suppl. Table 1), to which we will refer in the
further text as original pipeline(s). In contrast to general procedures, to
minimize the possibility of losing a relevant variant because of low
sequencing quality, confirmatory testing of our variants was performed
with no regard to the sequence coverage of the respective variants or
specific quality metrics, resulting thus that even ambiguous variant
calls having very low coverage or genotype quality scores were con-
sidered and evaluated.

2.1. Data set and study cohorts

The first part of our study, marked as study cohort 1, consisted of
MPS based diagnostic genomic findings that were evaluated by Sanger
sequencing. These findings were represented by 15 different potentially
medically relevant DNA variants of 12 different genes in 19 individuals,
including a previously reported case of a family trio where a clearly
pathogenic KAT6B variant was identified in a patient and not in her
parents, supporting a de novo origin of the variant (Radvanszky et al.,
2017). Since some of the variants were validated in several individuals,
the total number of validated variant positions in study cohort 1
reached 25 (Table 1; Table 2; Suppl. Table 1).

The second part of our study, marked as study cohort 2, consisted of
simultaneous sequencing analysis, using both MPS and Sanger se-
quencing, of 9 exons of theMBNL1 gene in 47 patients (having a clinical
suspicion of myotonic dystrophy type 1 or 2) and the complete set of 27
exons of the CFTR gene in one patient, representing thus altogether 450
exons.

Human Gene Nomenclature Committee (HGNC) approved gene
names, reference transcripts, variant descriptions and other additional
information for both data cohorts are available in Suppl. Table 1.

Table 2
Comparison of the results of variant calling for false positive and false negative variants using the original pipeline and the unified pipeline. Relatively loose criteria
used in the original pipeline led to the identification of more false-positive variants (unmarked samples), while these were not identified using the more stringent
criteria of the unified pipeline which, on the other hand, led to an increased number of false-negatives (marked by bold and outside borders). # - these variants were
not called automatically, rather following a visual inspection by the evaluator. * – true homozygous chr7:117235197_117235198delAT variant called as hetero-
zygous by the unified pipeline.

Study
Cohort

Patient Variant description MPS data – Original pipelines MPS data – unified pipeline Sanger
validation

Genomic Position (GRCh37) Genotype Gene Genotype
Quality
Score

Alt.
Allele
Read
Count

Total
Read
Count

Alt. Allele
Frequency
in reads

Genotype
Quality
Score

Alt.
Allele
Read
Count

Total
Read
Count

Alt. Allele
Frequency
in reads

1 16 chr19: g.15308391 T > G T/G NOTCH3 # 3 8 37.5 0 1 7 14.3 FALSE
1 17 chr3: 37067125C > A C/A MLH1 12.66 7 26 26.9 0 1 12 8.3 FALSE
1 17 chr3: 37067129C > T C/T MLH1 17.75 7 28 25.0 11 2 14 14.3 FALSE
1 19 chr12: g.33049654delG G/- PKP2 50.73 5 27 18.5 0 1 10 10.0 FALSE
1 19 chr17: g.41197777C > T C/T BRCA1 61.77 12 70 17.1 36 2 30 6.7 FALSE
2 19 chr7: g.117188736C > A C/A CFTR # 29 130 22.3 118 13 106 12.3 FALSE
2 19 chr7: g.117188797 A > G A/G CFTR # 18 126 14.3 0 0 111 0.0 FALSE
2 19 chr7: g.117188850 G > T G/T CFTR # 11 61 18.0 72 4 52 7.7 FALSE
1 19 chr14:

g.23889446_23889447insG
TGG/TGGG MYH7 71.73 4 16 25.0 0 1 11 9.1 TRUE

2 19 chr7: g.117188684 T > G T/G CFTR # 32 87 36.8 104 8 28 28.6 TRUE
2 19 chr7:

g.117235197_117235198delAT
-/-* CFTR # 23 23 100.0 123 11 16 68.8 TRUE
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2.2. Biological material

Genomic DNA was isolated from peripheral blood leukocytes by
Puregene™ DNA Purification Kit (Qiagen, Hilden, Germany), while MPS
data were generated using 3 different sequencing platforms and en-
richment kits, as specified below, but in each case according to the
protocols recommended by the manufacturers. Informed consent con-
sistent with the Helsinki declaration was obtained from each subject
before DNA testing. These consents contained an opt-in opt-out
checkbox to the possible inclusion of the patient's data and biological
samples for a research use in an anonymized form (for purposes in-
cluding further methods standardizations and population analyses),
while each of the included samples belonged strictly to patients giving
consent to be included in such a study.

2.3. Massively parallel sequencing and data processing

Massively parallel sequencing was performed either on a MiSeq
(Illumina) platform following enrichment and library preparation using
a TruSightOne Sequencing Panel Oligos (Illumina), or on a NextSeq
(Illumina) platform following enrichment and library preparation using
a TruSight Exome library preparation kit (Illumina) (Suppl. Table 1).
Patient 18 was sequenced by a commercial vendor (Macrogen Inc.,
Republic of Korea) using a SureSelectXT exome kit (Agilent
Technologies, Santa Clara, CA) on an Illumina HiSeq platform. The
variants of interest were identified and selected for this study following
original data analysis using the original pipelines implementing dif-
ferent combinations of tools (Suppl. Table 1). Alignment of reads was,
in each of the original pipelines, performed to the GRCh37/hg19 re-
ference genome. Since the combinations of the tools were hetero-
geneous, to perform more detailed analyses of qualitative and quanti-
tative measures all data generated using paired-end sequencing on
Illumina platforms were reanalyzed with a unified pipeline. This pipe-
line consisted of trimming of low quality ends of reads and adapter
remnants using Trimmomatic (Bolger et al., 2014), mapping to the
reference genome GRCh38/hg38 with Bowtie2 (Langmead and
Salzberg, 2012), sorting of reads according to mapped genomic posi-
tions with SAMTools Sort (Li et al., 2009), indexing using SAMTools
Index (Li et al., 2009), marking PCR duplicates using Picard Tools
(http://broadinstitute.github.io/picard/), indel realignment using the
Genome Analysis Toolkit (GATK; Broad Institute) (DePristo et al., 2011)
and variant calling using VarDict (Lai et al., 2016). Annotation and
filtering of called variants from the generated Variant Call Format
(VCF) files for Illumina data were performed using the GeneTalk
(GeneTalk GmbH) (Kamphans and Krawitz, 2012) and/or Ingenuity
Variant Analysis (Qiagen) tools. Variants/exons of interest were vi-
sualized and revised from Binary Alignment Map (BAM) files using
SAMTools (Li et al., 2009) and/or the Integrative Genomics Viewer
(IGV; Broad Institute) (Robinson et al., 2011; Thorvaldsdóttir et al.,
2013).

For the MBNL1 and CLCN1 genes IonTorrent PGM (Life
Technologies) sequencing was performed using an Ion 316 Chip and the
corresponding sequencing kits. Enrichment for library preparation was
performed using a custom HaloPlex Target Enrichment System (Agilent
Technologies) designed through the SureDesign software. The original
pipeline of IonTorrent data analysis included mapping to the reference
genome GRCh37/hg19 and variant calling by the Torrent Suite
Software v.3.2 (Life Technologies), implementing Torrent Mapping
Alignment Program (TMAP) and GATK. Annotation and filtering of
these data was performed using the SureCall (Agilent Technologies)
and/or GeneTalk annotation tools.

2.4. Sanger sequencing and data processing

Genomic regions surrounding the variants of interest were se-
quenced applying the BigDye Terminator v3.1 Cycle Sequencing kit

(Life Technologies). Following preamplification (oligonucleotide pri-
mers available in Suppl. Table 2) amplicons were purified using
Exonuclease I/Shrimp Alkaline Phosphatase (USB) treatment and se-
quenced in both forward and reverse direction using the same primers
as used for preamplification. After precipitation by sodium acetate
(NaOAc) and ethanol the sequencing products were dissolved in Hi-Di
formamide (Applied Biosystems), heat-denatured and separated by ca-
pillary electrophoresis on the genetic analyzer ABI Prism Genetic
Analyzer 3130xl (Applied Biosystems) using a standard protocol.
Electrophoretic data were collected and processed by the 3130 Data
Collection and Sequencing Analysis v5.4 software (Applied
Biosystems). For alignment to the corresponding reference sequences
(Suppl. Table 1), variant calling and data visualization/revision the
ChromasPro v1.6 (Technelysium Pty Ltd) software was used. To cope
with allelic dropout: 1) all false calls were re-analyzed by a second
round of Sanger sequencing; 2) primer binding sites were controlled for
SNVs in the MPS data directly; 3) for the PKP2 variant there was a
second primer pair designed and evaluated, since one of the original
primer binding sites were not covered by any MPS read; 4) the NOTCH3
gene was independently analyzed using Sanger sequencing in an ac-
credited diagnostic laboratory with no identified pathogenic allele re-
ported (detailed results are, however, not available from this con-
firmatory analysis).

3. Results

3.1. Confirmatory testing results of the original data sets

The first validation cohort of our study consisted of 15 different
suspected DNA variants, which were Sanger validated. In addition to
this variant set, 11 different potential DNA variants were identified in
the second validation cohort. When considering both cohorts, alto-
gether 26 different DNA variants were validated, including 20 single
nucleotide (SNVs) and 6 insertion/deletion variants (indels). However,
since some of the variants were validated in several patients and in
some patients there were several variants validated, the total number of
genotyped and Sanger validated positions reached 37 (25 from the first
and 12 from the second validation cohort) (Suppl. Table 1). From these,
29 were found to be true variants (Tables 1 and 2), while 8 were found
to be false-positives even after a second round of Sanger confirmation
(Table 2). The 8 false-positives consisted from 4 variants identified
automatically by one of the originally used pipelines and 4 selected as
suspicious positions based on manual evaluation (Table 2).

3.2. Results of the joint data set using the unified pipeline

To allow more detailed statistical evaluations, 31 variant positions,
all but those identified in the CLCN1 and MBNL1 genes using single-end
IonTorrent PGM reads, were re-analyzed from basic FASTQ files using a
unified bioinformatics pipeline. From the 31 re-evaluated possible
variant positions 20 genotypes were called correctly by the unified pi-
peline. In addition, each of the 8 previously identified false-positives
were correctly ignored by the unified pipeline. On the other hand, we
encountered also 3 true variants missed by this pipeline (false-nega-
tives) (Table 2).

In general, all false findings were found to have lower genotype
quality scores and total read counts when compared to true variants. On
the other hand, both genotype quality scores, total read counts, alter-
native allele read counts and alternative allele frequencies in reads
(allelic balance) showed significant overlapping regions between true
and false variants (Fig. 1). In addition, comparisons of values generated
by the original pipelines and the unified one revealed differences in
data distribution of genotype quality score, total read counts, alter-
native allele read counts and also of allelic balance (Suppl. Fig. 1).
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3.3. False-positive variants emerging from PCR duplicates

In 3 of them, chr17:41197777C > T (GRCh37; BRCA1; patient 19),
chr12:33049654delG (GRCh37; PKP2; patient 19) and
chr19:15,308,391 T > G (GRCh37; NOTCH3, patient 16), false posi-
tivity was indicated by an allelic disbalance that was further enhanced
by the unified pipeline, allowing VarDict to correctly discard their
presence. For the BRCA1 and PKP2 variants the artefacts originated
from single pre-amplification clones, clearly identifiable by visual in-
spection (Fig. 2). Although the results after re-evaluation did not
change on the level of BAM files (Fig. 2), such reads were flagged as
PCR duplicates and removed by VarDict allowing to reduce their ne-
gative effect on genotype calling.

3.4. False-positive variants emerging from repeat associated errors

Another types of false-positive findings, associated to high error
rate, were identified adjacent to the intronic polymorphic (TA)n(T)n

repeat motif of the MLH1 gene. Patient 17 had a (TA)n(T)n genotype
distinct from the reference sequence manifesting in alignments in a
form of deletions and substitutions (Fig. 3) which were, however,

considered neither for genotyping (because of high indel error rates)
nor for Sanger sequencing because of no associated clinical risk. Two
nearby variant positions, chr3:37067125C > A and chr3:37067129C
> T, however, met criteria to be called by the originally used pipeline
as possibly clinically relevant SNVs. Neither re-analysis using the uni-
fied pipeline nor Sanger sequencing proved the presence of any of the
possible variants. Manual control revealed remarkably high error rates
especially in reads running through the repetitive region, while those
which did not encompass the repeat motif remained without variants
(Fig. 3). When visualized, similarly high error rate and similar error
distribution was identified by both the original and the unified pipe-
lines (Fig. 3). In addition, for the one of the most variable 136 bp read,
BLAT (Kent, 2002) search did not identify highly identical regions
neither in GRCh37 nor in GRCh38.

3.5. False-positive variants emerging from incomplete reference genome

Higher rate of false-positive findings were encountered also in the
close proximity of a very similar intronic (TG)n(T)n microsatellite motif
of the CFTR gene. Results of patient 19, in addition to the true variant
chr7:117188684 T > G caused directly by the (TG)n(T)n, contained

Fig. 1. Distribution of the main qualitative and quantitative indicators of the analyzed variants. Although the values were based on the unified method, the division
of variants to groups “true”, “false-negative” and “false-positive” reflects the combined results of both pipelines. Empty marks among false-positives show variants
manually selected for validation following visual evaluation through a genomic viewer.

Fig. 2. Aligned reads, visualized in a genomic viewer (IGV), overlapping and surrounding the BRCA1 and PKP2 false-positive variants. Despite they were present
even after the processing using the unified pipeline, they were correctly ignored by VarDict. Alignments showing reads of the same length, containing the respective
variant calls, clearly indicate the PCR duplicate origin of the variant containing reads.
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several false-positive variant positions from which three reached criteria
to be called by the original pipeline, namely chr7:117188736C > A,
chr7.:117188797 A > G and chr7:117188850 G > T (each according
to GRCh37) (Table 2; Fig. 3).

Interestingly, read depths covering the respective region were found
to be sufficient for reliable variant and genotype calling. Paired reads
covering the region tended to align in close proximity to each other, as
expected for correctly aligned reads, while they supported the presence
of the variants when they overlapped each other as expected for true
variants. Moreover, false-positives tended to occur in the same se-
quencing fragments/reads but never on the same fragments/reads with
the true one, suggesting they are separate alleles occurring in trans
phase with the true one. Slight allelic disbalance, relatively dense
variant positions for one exon and associated reduced mapping quality
of the variant containing reads, on the other hand, raised concerns with
regard their true-positive nature that was subsequently negotiated by
Sanger sequencing. Thorough revision of chromatograms, however,
revealed slightly elevated background signal in the same positions
which were found to be false-positive in MPS data (chromatograms not
shown).

Re-evaluation of data using the unified pipeline, implementing
mapping to GRCh38 instead of GRCh37 used in the original pipeline,
led to a significant decrease in reads covering the respective region to
106 (from 130), 111 (from 126) and 52 (from 61), respectively for each
of the variant. Interestingly, the most prominent part of this decrease
involved reads containing the false-positive variants, lowering alter-
native allele frequencies to 12% (from 22.3%), 0% (from 14.3%) and
8% (from 18%), respectively (Table 2). These values did not met cri-
teria for variant and genotype calling using the unified pipeline. Par-
ticularly, in contrast to the MLH1 case, visualization revealed sig-
nificantly cleared alignment pattern when compared to that from the

original pipeline (Fig. 3).
Subsequent BLAT (Kent, 2002) search of the sequence of a 120 bp

false variants containing read on GRCh37 led to the identification of
three separate but highly homologous regions, having a potential to
“share” a subset of reads between each other. One on chromosome 7
and two on chromosome 20, while the chromosome 7 and one of the
chromosome 20´s regions both revealed 97.5% identity to the sequence
of the variant containing read and the third one with a 96.7% identity.
In contrast, the same search on GRCh38 found an additional 100%
match on chromosome 20, more centromeric from the 97.5% matching
region. Using the unified pipeline this GRCh38 unique region attracted
most of the variant containing reads from the CFTR region to their
correct position on chromosome 20, offering a perfect match for them,
clearing out the CFTR gene sequence on chromosome 7 (Fig. 3).

3.6. False-negative variants

The three-identified false-negatives were also associated to allelic
disbalance (Table 2). In contrast with the false-positives mentioned
above, these were proved by Sanger sequencing to be true variants but
were missed by the unified pipeline. The first one was a heterozygous
single nucleotide insertion chr14:23889446_23889447insG (GRCh37)
in the MYH7 gene of patient 19 identified by the originally used pipe-
line (Fig. 4). The unified pipeline markedly reduced reads supporting
the presence of the alternative allele (allelic balance reduced from 25%
to 9%) resulting in that the variant did not met criteria to be called and
genotyped. Subsequent manual control revealed that some of the ori-
ginal reads were mapped to another positions in GRCh38 while an-
other’s were removed by VarDict as PCR duplicates. Interestingly, the
same variant was identified and correctly called by both pipelines in
patient 18. In this patient, despite that total read counts were lower

Fig. 3. Aligned reads, visualized in a genomic viewer (IGV), overlapping and surrounding the CFTR and MLH1 false-positive variants. Both erroneous regions are
associated, although in different ways, to a highly similar complex microsatellite region, (TG)n(T)n in the CFTR gene and (TA)n(T)n in the MLH1 gene (in both cases
located around the true variant in the left part of the alignment view). The false-positive variant region of the CFTR gene get relatively cleared by the unified pipeline,
since the origin of the false variants stemmed in differences between the used reference genomes, rather than in the complex repeat motif itself. High error rate of the
MLH1 region, on the other hand, persisted even following alignment to GRCh38, since the false variants emerged, most probably, as amplification/sequencing
artifacts directly associated to the complex repeat motif.
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than those calculated for patient 19, allelic balance favored variant
calling.

The second false-negative, an allele with a 2bp deletion in the CFTR
gene (chr7:117235197_117235198delAT according to the GRCh37),
was missed by the unified pipeline because of realignment problems
resulting in a false heterozygous call instead of homozygous for the
deleted allele. In this particular case GATK based realignment correctly
placed the deletion containing reads to the reference sequence (Fig. 4),
while subsequently a built-in re-aligner of VarDict mixed them up again
resulting in an alternative allele frequency of 69% supporting a het-
erozygous genotype call, while the original pipeline identified a 100%
alternative allele frequency. Additional disabling of the VarDict re-
aligner corrected allelic balance to 94% allowing a correct homozygous
genotype call.

The third false-negative variant was identified again in the CFTR
gene of patient 19. A potentially pathogenic (T)5 allele, because of a
specific constellation of the patient´s (TG)10(T)7 and (TG)11(T)5 alleles
manifesting as an SNV chr7:117188684 T > G (GRCh37), was missed.
The reason in this case was an issue connected to indel artefacts around
the repeat region, possibly generated by PCR stutters, leading to an
excess variability in reads virtually creating a vertically complex var-
iant (Fig. 4), that in turn posed a problem to VarDict with establishing
an anticipated diploid genotype. Nomenclature errors and false-nega-
tive variants were reported to be associated with both horizontal and
vertical complex variants (Roy et al., 2018).

4. Discussion

Although several possible error sources are the same for MPS based

methods than for earlier generations of genetic analyses, both Sanger
sequencing or other methods, the overall need to heavily rely on au-
tomated and large-scale evaluation/interpretation of results elevated
challenges associated with identification and elimination of errors to
completely new dimensions. Despite that there are also MPS method
and platform specific error types (actually most commonly used
methods are based on sequencing by synthesis and on Illumina plat-
forms), with certain generalization it can be said that both possible
error sources and respective prevention/elimination strategies can take
place from the very first up to the last step of the whole process
(schematically reviewed in Fig. 5). Such as before, specimen exchange
and technical or carry-over contaminations can still happen during the
whole wet laboratory procedure and are most effectively preventable
by adhering with best laboratory practices and laboratory pipeline va-
lidations (Matthijs et al., 2016). Similarly, improperly set and not va-
lidated bioinformatics pipelines, together with batch effects in data can
lead to incorrect results throughout the whole process of the in silico
segment and can be minimized by thorough bioinformatics pipeline
validations (Roy et al., 2018) and implementation of data processing
standards (Regier et al., 2018). More specific errors might include
template DNA damage, PCR amplification errors and biases, errors in
the sequencing process itself (GC bias, base conversions, etc.), in silico
contaminations (from sample index swapping in multisample analyses)
and misalignments, all of which can lead to false-positive or false-ne-
gative variant calls. Up to the point of sequence specific signal gen-
eration by the sequencing platform, in addition to continuous devel-
opment of chemistry, instrument and signal processing capabilities
(Minoche et al., 2011), possible solutions can range from more optimal
sample processing and storage (Aird et al., 2011; Costello et al., 2013),

Fig. 4. Aligned reads, visualized in a genomic viewer (IGV), overlapping and surrounding the false-negative variants in the MYH7 and CFTR genes. In case of the G
insertion in the MYH7 gene a reduction of reads, supporting the presence of the alternative allele (inserted), by the unified pipeline is visible even in the level of the
alignments (allelic balance reduced from 25% to 9%). In contrast, alignments of the homozygous 2bp AT deletion containing reads of the CFTR gene seems to be not
affected by the unified pipeline, although an additional built-in re-aligner of VarDict led to a false heterozygous genotype call. Notably, the shown alignment to the
GRCh38 is captured before the additional disabling of the VarDict re-aligner. The bottom picture shows the reads containing the potentially pathogenic (T)5 allele in
the CFTR gene (that is part of the complex (TG)n(T)n motif). The variant is represented here as a T to G change because of a specific constellation of the patient´s
(TG)10(T)7 and (TG)11(T)5 alleles. The reason in this case was an issue connected to indel artefacts around the repeat region, possibly generated by PCR stutters,
leading to an excess variability in reads that in turn posed a problem to VarDict with establishing an anticipated diploid genotype.
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through the evaluation of DNA damage (Costello et al., 2013; Park
et al., 2017) or use of specific DNA repair enzymes (Chen et al., 2017),
dual indexing of adapters (Kircher et al., 2012; Costello et al., 2018)

and unique molecular identifiers (MacConaill et al., 2018; Kivioja et al.,
2011), up to PCR-free library preparations and single molecule se-
quencing applications (Ameur et al., 2019). Downstream of signal

(caption on next page)
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generation and base calling, in silico processes need to rely on filtering
and read trimming steps based on different quality control statistics
(both in FASTQ, BAM and VCF), and on effective and reliable variant
calling (Pfeifer, 2017) with optional validation of relevant or ambig-
uous variants using independent methods (for reference see citations in
the Introduction). Moreover, even if real sequence variants are effec-
tively distinguished from artefacts, errors in further downstream in si-
lico processes, such as nomenclature generation, annotation, classifi-
cation, prioritization and final variant filtering for reporting might have
also implications on the interpretation of MPS based results. These can
be most effectively minimized by nomenclature revisions, exploitation
of up-to-date versions of databases and reference data sets, evaluation
of possibly relevant findings and connected external metadata by
properly trained and qualified personnel (Richards et al., 2015; Matthijs
et al., 2016; Roy et al., 2018), as well as by the use of mandatory data
elements during results reporting (Swaminathan et al., 2017).

From all the above-mentioned possible error sources the challenge
represented by the differentiation of real sequence variants from se-
quencing artefacts is still one of the mostly debated, especially in
clinical settings. An anticipated validity of MPS identified DNA variants
is generally based on different qualitative and quantitative measures of
reads covering genomic regions under consideration. Different read
depth statistics, together with specialized genotype quality scores are,
therefore, of high relevance when estimating validity of called variants
directly from MPS data. Generally, the validity of an MPS variant with
high quality measures is not questioned, especially in case of SNVs
(Strom et al., 2014). Comparisons of genotype quality scores across
different pipelines are, however, not recommended (Strom et al., 2014),
since they are relative measures of the applied variant calling tool.
Moreover, our results showed that even basic quantitative metrics such
as total read counts, alternative allele read counts and allelic balance
tend to depend on the used pipeline. Encountered inconsistencies may
result from tools and specific filters implemented in the used pipeline,
as well as from different versions of reference genomes (Li, 2014).

Specifically, when considering genotype quality scores, total read
counts, alternative read counts and allelic balance in our data set, the
distribution pattern of true variants was found to be different from that
of false-negatives and false-positives, however, still with considerable
overlaps between the groups (Fig. 1). This make it impossible to set
defined thresholds to detect all true variants and sort out all false-po-
sitive ones, especially in the lower parts of the distribution pattern of
true variants, pointing to the importance of taking care when lower-
quality variants are evaluated.

To get further insight into the sources of our false results and to
define some indications applicable to increase attention about the
possible false or true nature of ambiguous variants, we decided to
characterize our false results in more details. False-positive variants
identified by our original approach were found to have quite different
origins. Besides extremely low coverage (NOTCH3), conventional
causes included also single pre-amplification clones induced artifacts
(BRCA1 and PKP2), which were found to be accompanied with certain
degree of allelic disbalance in our data set. These latter error sources
are generally created during library preparation (Bentley et al., 2008)
and are clearly identifiable by visual inspection in aligned reads. Au-
tomatic flagging and filtering of such clonal variant containing reads,

when library preparation is not amplicon based, may further enhance
allelic disbalance that was the case also in our unified pipeline in which
VarDict was able to correctly discard the presence of the above men-
tioned originally identified false-positive variants mitigating thus their
effect on the results. Tagging DNA library molecules prior to library
amplification by unique molecular identifiers (i.e. molecular barcodes)
incorporated into the sequencing adapters can be used post-sequencing
to aid in better identification of such PCR duplicates (MacConaill et al.,
2018; Kivioja et al., 2011).

Completely different examples of false-positive findings were iden-
tified adjacent to two highly similar complex microsatellite loci, namely
the (TA)n(T)n repeat motif in the MLH1 gene and the (TG)n(T)n motif of
the CFTR. In the first one, high error rate was identified most probably
because of repeat-associated synthesis and subsequent sequencing in-
troduced errors. This is well in line with previous reports describing
higher susceptibility of indels to PCR artifacts when compared to SNVs
(Li, 2014). Importantly, these did not disappear directly when pro-
cessed with the unified pipeline, although this pipeline was able to cope
with them and ignore false variants generated by them. In the CFTR
gene, in contrast, error pattern was explained with a less complete
version of the human reference genome, to which reads were originally
aligned, and largely disappeared when reads were aligned to a newer
reference genome version offering decoy sequences for the originally
mismapped reads. In general, completing of GRCh38 led to a great
reduction of overall and centromere related unassembled regions (N’s)
of the reference genome when compared to GRCh37 (Li and
Freudenberg, 2014) that was previously shown to have impact not only
on read mapping but, reasonably, also on variant calling (Budis et al.,
2019a; Li, 2014). Our conclusion about the mentioned possible error
sources seems to be proven also by findings that the CFTR false-posi-
tives tend to appear in the majority of samples, while the MLH1 erro-
neous pattern did not appeared in samples in which sequencing reads
did not run through the repeat region itself (data not shown).

The above mentioned false-positives were, in each of our cases,
effectively recognized and sorted out by the unified pipeline, although,
the same settings led to a missed variant in the same repeat associated
region of the CFTR gene to which some of the false positives were
connected. In general, reliability of variant calling from MPS data sets
tend to increase with increasing stringency of the implemented criteria
(Beck et al., 2016). This decreases the number of false-positive variants
in the variant list but simultaneously increases the number of missed
true-positive ones that is clearly visible in our data set too. Highly
stringent criteria therefore tend to reduce sensitivity and diagnostic
yield of the assays with a potential to have impact on the patient's
health and clinical management. On the other hand, it is significantly
easier to manually filter out possibly relevant false-positive variants,
generally having signs of false-positivity (in case of lower stringency),
than manually identify missed true-variants (in case of higher strin-
gency). Use of different stringency criteria for hard-filtering and soft-
filtering during variant calling may help to cope with this dilemma,
especially when followed by checking also those variants which did not
pass soft-filtering but are still present in the VCF.

With regard to variant types, except of one insertion, false-positives
were generally SNVs in our data set, while deeper investigation re-
vealed that 2 of them originated from microsatellite loci induced errors.

Fig. 5. Schematic representation of a massively parallel DNA sequencing based diagnostic process. Although the process is representative mainly for germline DNA
sequence variant identification and interpretation, the majority of the steps is relevant also for other applications, such as somatic variants or transcriptome analyses.
Shown are: main processing steps (yellow background, black outline); main products of each processing step (from the wet laboratory or in silico segment), such as
sequencing libraries or files of certain type (white background, black outline); external data sources used in relevant processing steps (grey background, black
outline); variant types (white background, black dashed outline); possible error sources (light grey background, red outline); possible preventive or elimination steps
against specific errors (orange background, red outline); and errors having their sources and elimination strategies in different segments (fonts in red colour), such as
errors generated in the sequencing process (segment of wet laboratory processes) which can be eliminated by bioinformatics filtering (segment of in silico processes).
Numbers in boxes with black background refer to the bullet point summarization at the end of the discussion part. QC – quality control; BAM – binary alignment map;
VCF – variant call format; SVs – structural variants; STRs – short tandem repeats; SNVs – single nucleotide variants; CSV - comma-separated values; XLS/XLSX -
Microsoft Excel spreadsheet formats (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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Identified false-negatives were exclusively indels, or were at least de-
rived from indels, located in microsatellite repeat regions. It is well
known that general methods used for variant calling are not the most
suitable tools for microsatellite genotyping, since the reliability of their
results depend on correct alignments of reads to a reference genome
(McKenna et al., 2010; Tae et al., 2013; Willems et al., 2017). Read
mapping with standard methods may not align reads to complex or
expanded microsatellite loci in the first place, missing thus the geno-
type, particularly in complex genomic regions or when the length of an
allele highly deviates from the reference number of repeats (Budis et al.,
2019b). This issue is generally addressed by specialized tools designed
to genotype microsatellite loci using alignment-based (Willems et al.,
2017) or alignment-free approaches (Budis et al., 2019b). According to
our results, however, in addition to problems with genotyping of the
microsatellite loci themselves, these regions can introduce higher error
rates even in their close vicinity, as demonstrated in our MLH1 false-
positive variants that should be kept in mind when evaluating such
regions.

Finally, whether required or not, when considering to perform
Sanger validation there are several points for consideration. Although
Sanger sequencing is accounted for a gold standard in DNA sequencing
it cannot be considered ultimate mainly due to errors residing in the
amplification step, natural variance of the sequence, as well as due to
polymerase slippage at low complexity sequences like simple repeats
and homopolymers (Kircher and Kelso, 2010). Even if our small scale
study did not revealed problems with Sanger results, several studies
proved that MPS results are at least as accurate as Sanger based assays,
suggesting that they could be used even as stand-alone tests (Baudhuin
et al., 2015; McCourt et al., 2013; Sikkema-Raddatz et al., 2013; Strom
et al., 2014). Moreover, a single round of Sanger sequencing is more
likely to incorrectly refute a true-positive variant identified using MPS
than to correctly identify a false-positive variant from an MPS based
test, suggesting that Sanger confirmation could not simply make the
analyses costly and time-consuming but also less sensitive, especially
for variants having robust quality scores (Beck et al., 2016). There are,
however, also special cases, which could be ambiguous in technological
terms but convincing in biomedical context (known pathogenic variants
fitting well into the clinical symptoms) which should be independently
confirmed.

Based on our experience and presented results, together with other
results published up to date and discussed in this manuscript, we sug-
gest the following minimal points of consideration: 1) data processing
standards should be implemented and each bioinformatics pipeline
should be thoroughly evaluated following its setup, or even after its
small changes or modifications; 2) use of more complete reference
genomes, up-to-date versions of databases and newly developed pipe-
lines, in connection with re-analysis of older data when required, might
be specifically beneficial for alignment, variant calling and subsequent
variant annotation; 3) since even variant callers can remove/ignore
reads, coverage statistics calculated following the alignment step may
not represent correctly real coverage used for final variant calling and
genotyping; 4) microsatellite loci should be masked from conventional
variant calling of SNVs and small indels (and vice versa), and genotyped
independently using dedicated tools; 5) before deciding about the ne-
cessity of independent confirmation of variants, relevant threshold es-
tablishments should be defined in each laboratory and for each in-
volved pipeline independently, following uniform re-evaluation of
whole validation data sets, since optimal thresholds of quantitative and
qualitative metrics may be strongly caller dependent; 6) based on a
professional judgement of an appropriately trained and skilled eva-
luator genotypes with sufficiently high qualitative and quantitative
metrics seems to not require independent confirmation, especially if
quality thresholds are defined empirically for the used analytical
system; 7) in special cases, decreasing the stringency of variant calling
and/or manual confirmation of ambiguous regions and calls, with
subsequent independent confirmation of low-quality variants, indels,

complex variants, and variants detected in their close proximity, seems
to be still necessary, and may be beneficial for variant discovery and/or
correct genotyping – based on a professional judgement of an appro-
priately trained and skilled evaluator; 8) reads spanning polymorphic
microsatellite loci, or other hard to sequence regions, should be treated
with higher attention, possibly also ignored, or at least included and
thoroughly evaluated in general validation processes of bioinformatics
pipelines.
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