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From Static to Dynamic Modeling
of Surfactants Micellization

Micelles and micellization appeal long lasting interest as promis-
ing drug carriers. A conventional parameter providing informa-
tion about formation of micelles is critical micelle concentration
(cmc). Its value roughly separates two states of the surfactant
solution – namely states with and without presence of micelles.
If concentration of surfactants in water solution approaches cmc
some physical quantities abruptly change, and this phenomen-
on is a key to determine value of the cmc. From numerous ap-
proaches to determination of the cmc the paper considers the
conductivity-based method. But rather than studying the mech-
anism of micellization that is primarily carried out by the colloid
chemists, the paper is focused on the development of an infor-
mation rich and optimal dynamical model of the conductivity vs.
concentration dependence. The model is derived from the solu-
tions of the 1st order differential equation. The optimal model’s
parameters are determined by the downhill simplex algorithm
and the cmc is computed on the basis of the curvature of the
dependence conductivity vs. concentration.
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Von der statischen zur dynamischen Modellierung der Mi-
zellenbildung von Tensiden. Mizellen und Mizellenbildung
stoßen als vielversprechende Medikamententräger auf lang an-
haltendes Interesse. Ein herkömmlicher Parameter, der Informa-
tionen über die Bildung von Mizellen liefert, ist die kritische Mi-
zellenkonzentration (cmc). Sein Wert trennt grob zwei Zustände
der Tensidlösung, nämlich Zustände mit und ohne Vorhanden-
sein von Mizellen. Wenn sich die Konzentration von Tensiden in
wässriger Lösung dem cmc-Wert nähert, ändern sich einige phy-
sikalische Größen schlagartig. Dieses Phänomen ist ein Schlüs-
sel zur Bestimmung des cmc-Wertes. Aus zahlreichen Ansätzen
zur Bestimmung der cmc wird im Beitrag die leitfähigkeitsbasier-
te Methode betrachtet. Anstatt jedoch den Mechanismus der Mi-
zellenbildung zu untersuchen, der in erster Linie von den Kol-
loidchemikern durchgeführt wird, konzentriert sich das Papier
auf die Entwicklung eines informationsreichen und optimalen
dynamischen Modells der Abhängigkeit der Leitfähigkeit von
der Konzentration. Das Modell wird aus den Lösungen der Diffe-
rentialgleichung 1. Ordnung abgeleitet. Die Parameter des opti-
malen Modells werden durch den Downhill-Simplex-Algorith-
mus bestimmt und die cmc wird auf der Grundlage der
Krümmung der Abhängigkeit ,,Leitfähigkeit vs. Konzentration\

berechnet.

Stichwörter: Modellierung, Optimierung, Leitfähigkeit, Mizelli-
sierung

1 Introduction

Surfactants (surface active substances) are composed of hy-
drophilic polar head group and nonpolar hydrophobic tail
group. For instance, molecules of ionic surfactants have
relatively large nonpolar part (a long aliphatic chain) and
smaller polar part. Due to this, if the concentration of sur-
factant in the water solution approximates a certain value
its molecules start to self-assemble into the formations of
size less than 50 nm that are known as micelles [1]. The il-
lustrating example in the end of the paper uses results of the
studies of the ionic surfactants. In accordance with [1] the
critical micelle concentration (cmc) is given by a small range
of concentration of the surfactant below which virtually no
micelles are detected and above which virtually all additional
surfactant molecules form the micelles". More precise defi-
nition is the Philip’s definition [2], which in essence states:
The cmc is a concentration of surfactant for which the max-
imal rate of the appearance of new micelles, i. e. max(df(c)/
dc) is reached, where f means the actual number of micelles
in water solution. This verbal definition amounts to fulfill-
ing the following mathematical condition d3f(c)/dc3 = 0.

Processes of the self-assembling are invoked by the hydro-
phobic interactions between hydrocarbon parts of surfactant
molecules and electrostatic repulsive forces. In comparison
with nonionic surfactants the higher concentration is re-
quired to overcome the electrostatic repulsion forces be-
tween ionic head groups. A direct consequence is that the
ionic surfactants of the same alkyl chain length are more dif-
ficult to aggregate and their cmc values are higher up to
some orders [2].

In parallel with the appearance of micelles the changes of
some physical properties of the solution, like the osmotic
pressure, surface tension, electric conductivity and others
can be observed. Just this phenomenon opens the doors for
the development of various methods of establishing the cmc.

In relation to the topic of this paper it is important to note
that the process of self-assembling is not instantaneous but,
as any other dynamical process, it takes some time. If con-
centration of surfactants in solution increases and reaches
a value close to the cmc, one can observe the gradual onset
of the self-assembling. If the rate of the process reaches a
peak value it gradually decreases towards a steady-state rate.
Hence; around the cmc is a separating concentration range
within which the maximal rate of change of the chosen
physical property is reached.
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The dependence of conductivity above and below of the sep-
arating range is commonly approximated by the straight lines
of different slopes. Therefore, the 1st cmc is commonly (and
relatively correctly) determined by the intersection of the ap-
proximating lines. But the drawback of such a linear approxi-
mation is evident. It provides nearly no information about the
rate of micellization. That is why this paper intends to present
a kind of the dynamic approach to evaluation of the conductiv-
ity (j) vs. concentration (c) dependence, i.e. j = f(c), which
should be able to express both the strength and rate of the pro-
cess of micellization. The instantaneous strength will be indi-
cated by the instantaneous conductivity while the rates of mi-
cellization by the instantaneous rate the changing conductivity.

Note that some surfactant may also exhibit the 2nd and
even 3rd cmc. If the concentration of a surfactant exceeds
the 1st cmc by a factor 2 to 10 for some single-chained ionic
surfactants, including those the authors have studied in [3],
the second gradual increase of the number of newly created
micelles appeared. The shapes of these new micelles may no
longer follow the spherical shape [4, 5]. The second peak of
the rate of micellization is shown in Figs. 1and 2 and the
corresponding concentration is just the 2nd cmc.

The first objective of this study consists in describing the
dependence j = f(c) as a static relation in two forms. The
first may be called as a descriptive form while the second is
an IF-THEN rules form. The second objective consists in the
describing the dependence j = f(c) dynamically in the form
of a particular solution of the 1st order differential equation.
To this end the dynamic model will be synthetized and its
parameters will be optimized by the computer simulation.
An advantage of the dynamic description rests in its ability
to capture the continual transition through the separating
range, i. e. from the totally non-micellized state to (virtually)
fully micellized state as a truly dynamic process. A natural
way of doing this rests in finding an appropriate solution of
the dynamic model – the differential equation. The third ob-
jective consists in demonstrating the obtained results by an
example. The theory developed here will be verified on the
results of the measurements the authors obtained early [3].

Before doing this let us first imagine that the (total) con-
centration of the surfactant in the water solution increases.
At the moment the concentration reaches values that are
close to the 1st cmc the rate of the creation of new micelles
start to gradually increase as far as it reaches a peak value.
At this time instant the rate starts to gradually decrease to-
wards a certain steady-state rate, which is given by the slope
of line between the 1st and the 2nd cmc. Hence; the rates of
the self-assembling and the rate of the changing conductiv-
ity of solution are dynamic processes and as such they can be
described by a differential equation. The term \rate" is here
exclusively used in relation to the time. In what follows, for
the speed by which the conductivity changes with respect to
the (changing) concentration we use the term \gradient".

The Fig. 1 portrays the process rate (r) as a function two pa-
rameters – concentration and time, i. e. r = f(c,t). Values of the
both cmc-s are given by the peaks of the 3D graph. The rate of
micellization is depicted as a function of two variables – the
concentration and time. The illustration stresses that the pro-
cess is dynamic and smooth rather than static process that
undergoes an abrupt change. The created micelles have
spherical shapes and the packing parameter is < 0 : 33 [4].

As follows from the above explanations, the full range of
concentrations consists of two linear segments that are sep-
arated by a narrow separating interval shown in Fig. 2 in
which the most molecules are micellized. The first segment
is located over the interval 0– 1st cmc where virtually no mi-
celles exist while the second is over the interval 1st cmc – 2nd

cmc where virtually all surfactants’ molecules are micellized.
Some authors try to approximate the conductivity func-

tion over the separating interval (Fig. 2) by parametric statis-
tically based approaches. For instance in [6] the 1st cmc is
determined as the mean value of the Gauss curve. This im-
plies that the separating interval is symmetrical with respect
to the 1s cmc, which may not be always true (!). Rather, the
onset of the appearance of micelles is more rapid than its
fading. The authors observed this phenomenon in virtually
all experiments aimed at the determination of the cmc [3].

Another approximation of the regression function may be
based on nonparametric approaches. For instance in [7] no

Figure 1 The process rate as a function of concentration and time Figure 2 The typical dependence j = f(c)
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structure of the (nonlinear) regression function is supposed.
It may be approximated either deterministically (for in-
stance by the spline approximation) or statistically. Here it
is worth mentioning that the parametric and nonparametric
approaches are complementary rather than antagonistic and
each has its pros and cons. Nonparametric approaches are
more universal but computationally demanding, while the
estimation of parametric models is reduced to a few param-
eters which make them very efficient. In this paper is
adopted the parametric but dynamic approach.

While the micelles appearing in the vicinity of the 1st cmc
are of the spherical shape, those appearing at and above the
2nd cmc are road – like shaped. [4] It means that the 2nd cmc
is connected with some structural transitions. In relation to
the 2nd cmc the authors share the opinion presented in [4]
which says: \The term 2nd cmc should be treated with some cau-
tion" because the second brake in the conductivity vs. concen-
tration dependence may not be invoked by transition of the
spherical to the prolonged micelles, but rather by the interio-
nic and inter micellar interactions. That is also reason for ex-
istence of small curvature of the plot above the 1st cmc, though
it is commonly approximated by the linear segment. It is also
known that more distinct structural transition may be induced
by adding inorganic electrolytes or some nonelectrolytes.

In the conclusion it is worth mentioning that the rate of
micellization has also the strong impact on the development
of the advanced dosage forms. It is utilized the fact that mi-
celles may entrap the drug molecule. Hence, it may be said
that the higher rate of micellization the lower rate of bioa-
vailability and also the lower rate of the therapeutic perfor-
mance. This expert knowledge is intensively utilized in the
development of the controlled and targeted delivery of the
drugs with an ultralow cmc [8, 9].

2 Some preliminaries to models of micellization

Typical dependence of conductivity vs. concentration con-
sists of the straight-line segments as shows Fig. 2.

Physical reasons behind Fig. 2 are may be formulated in
the following way: Due to presence of sufficient number of
free ions the conductivity initially increases linearly with in-
creasing concentration. When the concentration approaches
the 1st cmc one can observe the quick onset of the newly
emerging micelles. Immediately after that virtually all sur-
factants molecules are micellized and new micelles appears
only due to further delivery of new surfactant molecules.

At this situation the movability of free ions is hampered
by prevailing number of the micellized molecules. There-
fore, the conductivity increases further but with the shrink-
ing rate, which relatively quickly approaches a constant rate.
That is why the dependence conductivity vs. concentration is
commonly (and roughly) modelled with the straight-line
segments as shows Fig. 2 and the 1st cmc is determined by
intersection of two regressing lines.

A drawback of such a linear portrait is that the immanent
dynamic of the process is totally omitted. Therefore real behav-
iour of the process of micellization evokes the researcher to
model the dependence of conductivity vs, concentration by
a suitable nonlinear function. In this paper we suggest to
smoothing up the dependence not only in the vicinity of
the 1st cmc as it is done in [6], but we smoot up the whole
dependence.

3 The static model

The conductivity j(c) over the whole concentration interval
can be approximated by three straight line segments: 0-A,
A-E, and over E with the slopes k1 = tg(a), k2 = tg(b) and
k3 = tg(c) respectively. The intersection of the first two lines
defines point A and the intersection of the second and third
line defines point E. The conductivity j(c) over the interval
0-1stcmc is described by the equation:

jðcÞ ¼ k1 1 cð Þ � 1 c� 1st cmcð Þ½ �c � k1 ¼ tgðaÞ ð1Þ

The function 1(c) is known as the Heaviside function [11]. It
is conventionally written in bolt, which stresses that 1(c) is a
function of the independent variable \c \and not the mere
number one. It is defined by the equation (2).

1 cð Þ ¼ 0 for c < 0 and 1 cð Þ ¼ 1 for c � 0 ð2Þ

The expression 1(c-1st cmc) in (1) means that the function
1(c) is shifted along the positive axis by 1stcmc units. The
geometrical interpretation of the whole expression [1(c)–
1(c-1st cmc)] in (1) is a rectangle over the line segment 0-1st

cmc as shows the thick line in Fig. 3.
The linear increase of the conductivity j(c) over the inter-

val (1st cmc-2nd cmc) is approximated by the equation (3).

jðcÞ¼ k2 1 c�1st cmcð Þ�1 c�2nd cmc
� �� �

cþd1 k2¼ tgðbÞ ð3Þ

Analogously, the conductivity of the solution for concentra-
tions greater than 2nd cmc is given by the equation:

jðcÞ ¼ k3 1 c� 2nd cmc
� �� �

cþ d2 k3 ¼ tgðbÞ ð4Þ

Finally, the mathematical expression of the conductivity over
the whole concentration interval can be approximately de-
scribed as the sum of linear segments:

jðcÞ¼ k1 1 cð Þ�1 c�1st cmcð Þ½ �cþk2

1 c�1st cmcð Þ�1 c�2nd cmc
� �� �

cþ d1 þ

k3 1 c� 2nd cmc
� �� �

cþ d2 ð5Þ

4 The IF-THEN form of a static model

An idea behind the process of the micellization is as follows: For
concentrations below the 1st cmc no micelles exist but above it

Figure 3 The function 1(c)

Z. Vitková et al.: From static to dynamic modeling of surfactants micellization

Tenside Surf. Det . 58 (2021) 1 3

TS2296 – 10.12.20 reemers



the surfactant is supposedly (!) completely micellized. Hence, the
information imbedded in models (3)–(5) is rather pure.

Slightly greater piece of information is imbedded in the
IF-THEN rule model, which distinguishes between the total,
monomeric and micellized concentrations of surfactants.
Let us denote the total (monomeric + micellized) concentra-
tion of the surfactant as c, the concentration of monomeric
surfactant as c1 and the concentration of micellized surfac-
tant as cm. Then the rough but easily implementable model
describing of the both conductivities and concentrations in
terms of c1, cm is described below. The similar though signif-
icantly simplified model can be found in [12]

IF c < 1st cmc THEN c1& c and cm = 0 and j = k1c
IF c & 1st cmc THEN c1 & cm &1st cmc and j = j(1st cmc)
IF 1st cmc < c < 2nd cmc THEN c1 & 0 and cm & c and

j = k2c + d1 only globe-like micelles exist
IF c & 2nd cmc THEN c1&0 and cm = 2nd cmc and

j = j(2nd cmc) onset of rod-like micelles
IF c>2nd cmc THEN c1&0 and cm = c and j = k3c + d2 only

rod like micelles exist
The sign & means \approximately equal" and k1, k2 are

slopes of the linear segments.

5 The dynamic model

Based on the physical opinion and in the congruence with
the everyday experience one can reasonably expect that the
appearance of micelles is a dynamical process. It means
that all micelles cannot appear at the same time instant.
Let us remind here the old philosophical wisdom \Natura
non facit saltus" (Nature does not make jumps). Transitions
of the conductivities j(c) from one linear segment to an-
other cannot happen abruptly – they should be smooth. It
means that the process of micellization should exhibit its
own dynamics. Examples of the natural dynamical pro-
cesses are radioactive decays, charging/discharging capaci-
tors, growth of bacteria, growth of trees, and growth of an-
imals to mention only few.

In this regard the aim of paper is to synthetize a model
of dynamic behavior of the dependence conductivity vs.
concentration. Contrary to the work of Garcia-Mateos [6],
who conceived the transitions from the non-micellized to
micellized state from the perspective of the probability the-
ory. In particular, in the role of the approximation function
they used the Gauss function, while this study has adopted
the deterministic view. While the approach of Garcia – Ma-
teos et al. estimates the spread of the conductivity values

around the 1st cmc by the standard deviation, the approach
presented here estimates it dynamically – in the form of a
solution of a differential equation. It does not require any
involving computations; it is natural and provides suffi-
cient and verifiable information about transitions between
the neighboring linear segments. Inspired by the system
theory, the authors have decided to approximate the piece-
wise linear dependence of the conductivity vs. concentra-
tion (shown in Fig. 2), by the continuous function, namely
by the solution of the 1st order differential equation (6).
Such a function approximates behavior of the conductivity
j(c) not only in the vicinity of the 1st cmc but also in all
concentrations between the point B and the point E as it
is shown in Fig. 5 by the thick curve. A meaning of the
point B will be specified in the sequel.

The approach adopted in this paper is partially inspired by
the system theory; therefore, we borrow and briefly explain
some terminology from this theory. The equation (6) is a
conceived as a mathematical model of a dynamical system
– in particular, the 1st order linear time invariant dynamical
system [12]. The time as the independent variable is re-
placed by the concentration. The input to the system is a
constant quantity K. In this specific case the constant K has
the meaning of a static gain of the system, that is the steady
state value of the solution to equation (6) for the input K = 1.

sdj=dcþjðcÞ¼K with an initial conductivity j c¼0ð Þ¼ 0 ð6Þ

As it will follow from the equation (7) and Fig. 4, the steady
state value K of the conductivity function j(c) is equal to
the limit value of the function j(c) if the concentration ap-
proaches a value of infinity. Similarly, in the system sense,
the parameter s is so-called time constant, because it is a
measure of the speed by which the system responses to
an input excitation. The smaller the s is the quicker is the
system’s response. But in the context of the problem re-
solved in this paper we abandon the terms static gain and
time constant. We will simply call them as parameters K
and s. The parameter K is equal to the steady state value

Figure 4 The function j(c) Figure 5 Steps of optimization procedure
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of the function (7) and s tells us how quickly the conductiv-
ity function j(c) will approach its asymptote, which in this
case, is the line connecting point A and E. The analytic
solution of the equation (6) for the initial condition
j(c = 0) = 0 is given by the nonlinear function (7).

j cð Þ ¼ Kð1 � expð�c=sÞÞ ð7Þ

One can easily compute that the concentration c = s is
needed for the conductivity j to reach 63.2% of its steady
state value, c = 2s for reaching 86.5%, c = 3s for reaching
95 %, and finally c = 4s for reaching 98.3% of its steady state
[11]. Therefore, it may be reasonable to suppose that for
c ‡ 3s the terminal part of the conductivity j(c) will virtually
exactly approximate the straight line defined by the line seg-
ment A-E. Hence, the constant s provides sufficiently rich
information about the dynamical behavior of j(c). The
graph of j(c) is shown in Fig. 4 and it shows that the numer-
ical value of the constant s is equal to the concentration
needed for conductivity to reach its steady state value if it
would increase along the tangent line constructed in the ori-
gin to the dependence j(c). Clearly, the straight line j(c) = K
is an asymptote to the function j(c).

5.1 Optimal approximation of j(c)

Here we will present the general procedure of the optimal
approximation of the measured dependence j(c) in the
four steps.

Firstly, make the asymptote of j (c) shown in Fig. 5 to be
parallel to the line defined by points A and E. There are
two possibilities – either rotate function (7) around the
origin by the angle b or superimpose it on the slanted line
j(c) = tg (b)c (not depicted in Fig. 5). Though the second
possibility slightly modifies the original meaning of the con-
stant s, it does not change the scale of the concentration axis
what simplifies the whole procedure. Therefore, we adopted
the second possibility. After superimposing j(c) on the line
j(c) = tg (b)c we obtain the function j’(c):

j0ðcÞ ¼ tgðbÞcþ jðcÞ ð8Þ

The mutually parallel lines are stressed by the symbol \\. Be-
fore proceeding further, it would be worth reminding the
following result from the planar geometry: For the straight
line y = px + q, to be an asymptote of a function f(x), its pa-
rameters p, q must take the following values:

p ¼ limx!1½f xð Þ=x�
q ¼ limx!1 ½f xð Þ � px� ð9Þ

Taking it into account, the asymptote of the function (8)
should be given by the straight line (10)

j cð Þ ¼ pcþ q ð10Þ

with the following parameters:

p ¼ limc!1 ½½tgðbÞcþ Kð1� expð�c=sÞÞ =c� � ¼ tg ðbÞ
q ¼ limc!1½tgðbÞcþ Kð1� expð�c=sÞÞ � tgðbÞc� ¼ K ð11Þ

Secondly, shift the graph j’(c) in the positive vertical direc-
tion to the point E, whose horizontal distance from the

point A is sufficiently large. For instance, (if the 2nd cmc is
known), the point E may be a point representing the con-
ductivity j(c) at the 2nd cmc as it is shown in Fig. 5. The
shifted function is denoted by j@(c). Such a choice will se-
cure that the value of j@(c) at the point E will coincide with
its asymptote. As to any function cannot come in the con-
tact with its own asymptote, this operation introduce a
small incorrectness, but from the practical aspect it is quite
acceptable. This contention is substantiated by the fact that
for concentration c = 5s the j(c) given by (7) reaches 99.3 %
of its steady state or, in the other words, it approximates its
own asymptote with less than 1% error. Clearly, as Fig. 5
shows the graph of j’(c) should be shifted upward by the
distance:

d ¼ q2 � Kð Þ ð12Þ

The shifted graph j@(c) has, with regard to (8), the analytic
expression of the form (13).

j00ðcÞ ¼ tg ðbÞcþ j cð Þ þ d ð13Þ

Thirdly, find the derivation of j@(c) with respect to c:

dðj00ðcÞÞ=dc ¼ tg ðbÞ þ K=sð Þexp �c=sð Þ ð14Þ

Thus, for the slope of the tangent line at c = 0 we will get:

½dðj00ðcÞÞ=dc�c¼0 ¼ tg ðbÞ þ K=sð Þ ð15Þ

Therefore, the tangent line of j@(c) at c = 0 is expressed by
the equation:

jðcÞ ¼ ½tg ðbÞ þ K=sð �cþ d ð16Þ

Let us remind, that the sense of mathematical operations,
we have performed so far, follows the main aim of the pa-
per, that is to replace the abrupt change of the conduc-
tance j(c) at the point A by the nonlinear smooth curve
j@(c) given by the equation (13) or more precisely by its
shifted version j’’’(c-cB), which is driven by the thick curve
in Fig. 5.

To obtain the analytical expression for j’’’(c-cB) we
should find a point B – the point where the curve j’’’’(c)
leaves the regression line j(c) = tg(a)c + q1. The graph of
j’’’(c-cB) lies partially on the j@(c) and partially on the
regression line j(c) = tg(a)c + q1. Clearly, the regression
line j(c) = tg(b)c + q2, is the asymptote of j’’’(c-cB). In
other words, the graph of j’’’(c-cB) consists of the linear
part (between the origin and the point B) and the non-
linear part (between points B and E), which are connected
just at the point B. To obtain the smooth transition from
one part to another, the slopes of these two parts at the
point B must be equal. Therefore, the following equality
must be true:

tg bþ K=sð Þ ¼ tg að Þ ð17Þ

From (17) follows an important result for the ratio (K/s):

K=s ¼ tg a� tg b ð18Þ

Fourthly Determine the point B(cb,jb). From Fig. 5 it is
clear that the point B is a cross-section point of the straight
lines j(c) = tg(a)c + q1 and j(c) = tg (b)c + (q2–K). Note that
though the Fig. 5 present the situation as if q1 = 0, in gen-
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eral q1= 0. Therefore, in the following derivations we will
consider q1= 0. After short manipulation we get the coor-
dinates of the point B(cB, jB):

cB ¼ ðq2 � KÞ=ðtga� tgbÞ; jB ¼ tg að ÞcB þ q1 ð19Þ

Hawing this, we need to identify the origin of j@(c) with the
point B. To do this we shift the j@(c) along the horizontal
axis by cB units and then along the vertical axis by D = tg
(b)cB units. In this way we obtain the following analytic ex-
pression of the function j’’’(c-cB):

j000 c�cBð Þ ¼ j00 c�cBð Þ þ D ¼ j00 c�cBð Þ þ tg bð ÞcB ð20Þ

After taking into account (13) we finally obtain:

j000 c�cBð Þ¼ tgðbÞðc�cBÞþK½1�exp � c�cBð Þ=sð �

þ dþ tgðbÞcB ð21Þ

Using denotation D = d + D = q2–K + tg (b) cB, the analytic
expression of the searched approximating curve will be giv-
en by the equation:

j000 c�cBð Þ¼ tgðbÞðc�cBÞþK 1�exp � c�cBð Þð Þ=s½ �þD ð22Þ

Finally, the complete approximation of the measured con-
ductivity consists of the linear and nonlinear parts as it is
expressed by the equation:

jðcÞ¼ tg að Þcþq1 if c � cB and jðcÞ¼ j000 c�cBð Þifc � cB

ð23Þ

The graph of j’’’(c-cB) is drawn by the thick curve. As shows
Fig. 5 the nonlinear function j’’’(c-cB) is smoothly concate-
nated with the straight line j(c) = tg(a)c+q1 just at the point B.

5.2 Optimization procedure

The role of the optimization is to find optimal values of the
parameters K and s, which will minimize a criterion of an
optimal match of the function j’’’(c-cB) with the samples of
the conductivity j(c) obtained from the laboratory experi-
ment. In the role of a measure of the optimal match is
used the standard Root Mean Squared Error (RMSE).

Let the entries of a vector y represent the measured sam-
ples of the conductivity j(c) between points B and E. Let us
recall that with respect to equation (18), once the value of
the parameter K is known the point B is unambiguously
determined. Moreover, since the slope of the function
j’’’(c-cB) at the point B and the slope (tg a) of the first re-
gressing line are equal, the parameter s is also determined.
Finally, let the entries of a vector ŷ represent exact values of
the function j’’’(c-cB) corresponding to the homothetic en-
tries of the vector y of the measured samples. Let the differ-
ence between vectors y and ŷ is the vector of the adaptation

errors e ¼ y� ŷ. Then the standard RMSE criterion is giv-
en in the form:

RMSE ¼
ffiffiffiffiffiffiffi
eTe
N

r

ð24Þ

where N is the length of the error vector e, eT is a transposi-
tion of e and eTe is a scalar product of the vector e. At this
point we can apply any standard optimization procedure to
find an optimal value of the parameter K. In this case is
used the downhill simplex algorithm as implemented in Py-
thon module SciPy.

5.3 The corrected value of the 1st cmc

The 1st cmc is commonly approximated by the c-coordinate
of the point A. Hawing the optimal value of K and s deter-
mined, one can insert them into j’’’(c-cB) so as to obtain
the optimal approximation of the measured conductivities..
Subsequently one can find a corrected value of the 1st cmc as
a concentration at which the function j’’’(c-cB) exhibits the
maximal curvature – CURV. Alternatively, the minimal Ra-
dius of curvature =1/CURV) can be also determined. As fol-
lows from the theory of analytic plane curves, the curvature
CURV of the curve j’’’(c) can be calculated in accordance
with the equation:

CURV ¼
d2K000 cð Þ

dc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dK000 cð Þ
dc

� �2
	 
3

s ð25Þ

As to determination of an analytical expression for maximal
value of the CURV may be the tedious task even for simple
functions, it can be easily found by a suitable searching pro-
cedure. In this case was applied the linear search for finding
a concentration value which maximizes the criterion CURV
over the interval (cB – cE). The theory that was derived so far
is verified by the simulation experiment. The results are de-
monstrated and summarized in the following example.

5.4 Example

The conductivity of the solution of the surfactant hexadecyl-
pyridinium bromide as a function of its concentrations at
the temperature 30 8C was obtained in the laboratory experi-
ment [3]. The obtained samples are summarized in the
Table 1 and the corresponding regression lines are shown
in Fig. 6.

The optimal approximation of j(c)-samples in the Table 1
is represented by the partially nonlinear function (23) and
depicted in Fig. 7. The approximation was obtained by the
downhill simplex algorithm.

The detailed view of the vicinity of the point A is shown in
the Fig. 8 where is seen the magnified cutout of the rectangle

c · 104

[mol · dm–3]
1 2 3 4 5 6 7 8 9 10 11 12 13 14

j
[lS · cm–1]

10.7 20.6 30.3 39.2 48.8 58.5 64.7 70.0 75.4 78.7 82.4 85.4 89.9 93.6

Table 1 Conductivity of the solution of the surfactant hexadecylpyridinium bromide as a function of its concentrations at 30 8C

Z. Vitková et al.: From static to dynamic modeling of surfactants micellization

6 Tenside Surf. Det. 58 (2021) 1

TS2296 – 10.12.20 reemers



(5.8-7.4) x (55.0-70) around the point A. The concentration
corresponding to the maximal value of the function CURV is
denoted as the 1st cmc corrected. As can be seen this value is
slightly lower than the intersection of the regression lines.

Contrary to the traditional static model (5) or IF – THEN
model, there is suggested a dynamical model in the form of
the 1st order linear differential equation and optimal values
of its parameters, namely the Kopt and sopt are determined.
The dependence j(c) is optimally (in the view of the RMSE cri-
terion) approximated by the solution of the dynamical model.

The instantaneous gradient (dj’’’(c-cB))/dc) was also evalu-
ated. In Fig. 9 it is driven by the doted curve. The scale of
the gradient is appended on the right side of the figure.
The gradient is constant up to cB. It indicates that in the so-
lution is present a sufficient number of the free ions and
consequently, the conductivity increases proportionally to

the concentration. But for the concentrations c > cB the gra-
dient nonlinearly decreases. The reason is that the number
of micelles increases, which hampers of the movability of
free ions. Hence, for concentrations c > cB the gradient
serves as a measure of the intensity of creation of micelles
or a measure of the process activity.

6 Conclusions

Every natural process is governed by laws of nature and as
such it runs smoothly and (in general) nonlinearly. The sharp
jumps of its characteristic quantities may be observed exclu-
sively on its more or less (in)accurate model. This phenomen-
on is also observed in the behavior of the electrical conductiv-
ity of the surfactant solution as a measure of a number of the
micellized surfactant molecules. That is why the process of

Figure 6 The dependence j(c) obtained by the
experimental measurements

Figure 7 The optimal dependence j(c). Experi-
mental samples (squares and circles), optimized
approximation by dynamic model (thick curve be-
tween points B and E)

Figure 8 Magnified vicinity of the point A with
the corrected value of the 1st cmc
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micellization should be considered to be a dynamical process.
The analytical expressions for two traditional static models

based on the interval description of the dependence of the
conductivity vs. concentration were presented. The first is
expressed though the Heaviside unit functions, while the
other uses IF-THEN rules.

The dynamical model of the process of micellization re-
flecting the dynamics of the natural processes was suggested
in the form of the 1st order linear differential equation.

The model was a stepping stone for derivation of the the-
oretical basis of the optimal nonlinear approximation of the
measured j(c)-samples. As a result the analytical expression
of the optimal approximation curve was obtained. The com-
plete approximation function consists of two parts, namely
the linear regressing straight line and the optimal nonlinear
function. The optimal point (the point B) where these two
partial functions are to be concatenated was determined.

Due to the evaluation of the maximal curvature of the
nonlinear part it was possible to find an optimal value of
the 1st cmc. The procedure was verified by the realistic ex-
ample and the following optimal values were obtained:

Bopt (5.932, 57.785)
Kopt. = 3.98
sopt = 0.72
maxCURV = 0.0123288
1st cmc = 6,655 · 10–4 [mol dm–3] – determined by the

measurement
1st cmc corrected = 6.636 · 10–4 [mol dm–3] – determined

by the concentration in which max CURV is reached
As the results say, values of the 1stcmc and the 1st cmc cor-

rected are close to each other. The difference is prevailingly
caused by using the point A (determined by pure linear re-
gression) as a main carrier of information about the 1st cmc.

The salient feature of the presented dynamic modelling
and the nonlinear approximation following from it, is that
the approximation of the measured samples is much close
to the reality than pure linear approximation by straight re-
gression lines.
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